Sustainability Efficiency Factor| Measuring Sustainability in Advanced Energy Systems through Exergy, Exergoeconomic, Life Cycle, and Economic Analyses

by Lauren Boldon

Institution: Rensselaer Polytechnic Institute
Year: 2016
Keywords: Nuclear engineering; Energy
Posted: 02/05/2017
Record ID: 2094880
Full text PDF: http://pqdtopen.proquest.com/#viewpdf?dispub=10010649


The Encyclopedia of Life Support Systems defines sustainability or industrial ecology as ?the wise use of resources through critical attention to policy, social, economic, technological, and ecological management of natural and human engineered capital so as to promote innovations that assure a higher degree of human needs fulfilment, or life support, across all regions of the world, while at the same time ensuring intergenerational equity? (Encyclopedia of Life Support Systems 1998). Developing and integrating sustainable energy systems to meet growing energy demands is a daunting task. Although the technology to utilize renewable energies is well understood, there are limited locations which are ideally suited for renewable energy development. Even in areas with significant wind or solar availability, backup or redundant energy supplies are still required during periods of low renewable generation. This is precisely why it would be difficult to make the switch directly from fossil fuel to renewable energy generation. A transition period in which a base-load generation supports renewables is required, and nuclear energy suits this need well with its limited life cycle emissions and fuel price stability. Sustainability is achieved by balancing environmental, economic, and social considerations, such that energy is produced without detriment to future generations through loss of resources, harm to the environment, etcetera. In essence, the goal is to provide future generations with the same opportunities to produce energy that the current generation has. This research explores sustainability metrics as they apply to a small modular reactor (SMR)-hydrogen production plant coupled with wind energy and storage technologies to develop a new quantitative sustainability metric, the Sustainability Efficiency Factor (SEF), for comparison of energy systems. The SEF incorporates the three fundamental aspects of sustainability and provides SMR or nuclear hybrid energy system (NHES) reference case studies to (1) introduce sustainability metrics, such as life cycle assessment, (2) demonstrate the methods behind exergy and exergoeconomic analyses, (3) provide an economic analysis of the potential for SMR development from first-of-a-kind (FOAK) to nth-of-a-kind (NOAK), thereby illustrating possible cost reductions and deployment flexibility for SMRs over large conventional nuclear reactors, (4) assess the competitive potential for incorporation of storage and hydrogen production in NHES and in regulated and deregulated electricity markets, (5) compare an SMR-hydrogen production plant to a natural gas steam methane reforming plant using the SEF, and (6) identify and review the social considerations which would support future nuclear development domestically and abroad, such as public and political/regulatory needs and challenges. The Global Warming Potential (GWP) for the SMR (300 MWth)-wind (60 MWe)-high temperature steam electrolysis (200 tons Hydrogen per day) system was calculated as approximately 874 g CO2-equivalent as…