AbstractsComputer Science

Learning Hierarchical Representations for Video Analysis Using Deep Learning

by Yang Yang

Institution: University of Central Florida
Degree: PhD
Year: 2013
Keywords: Dissertations, Academic  – Engineering and Computer Science; Engineering and Computer Science  – Dissertations, Academic; Video analysis; deep learning; complex event; object detection; action verification
Record ID: 1995436
Full text PDF: http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5892


With the exponential growth of the digital data, video content analysis (e.g., action, event recognition) has been drawing increasing attention from computer vision researchers. Effective modeling of the objects, scenes, and motions is critical for visual understanding. Recently there has been a growing interest in the bio-inspired deep learning models, which has shown impressive results in speech and object recognition. The deep learning models are formed by the composition of multiple non-linear transformations of the data, with the goal of yielding more abstract and ultimately more useful representations. The advantages of the deep models are three fold: 1) They learn the features directly from the raw signal in contrast to the hand-designed features. 2) The learning can be unsupervised, which is suitable for large data where labeling all the data is expensive and unpractical. 3) They learn a hierarchy of features one level at a time and the layerwise stacking of feature extraction, this often yields better representations. However, not many deep learning models have been proposed to solve the problems in video analysis, especially videos ``in a wild''. Most of them are either dealing with simple datasets, or limited to the low-level local spatial-temporal feature descriptors for action recognition. Moreover, as the learning algorithms are unsupervised, the learned features preserve generative properties rather than the discriminative ones which are more favorable in the classification tasks. In this context, the thesis makes two major contributions. First, we propose several formulations and extensions of deep learning methods which learn hierarchical representations for three challenging video analysis tasks, including complex event recognition, object detection in videos and measuring action similarity. The proposed methods are extensively demonstrated for each work on the state-of-the-art challenging datasets. Besides learning the low-level local features, higher level representations are further designed to be learned in the context of applications. The data-driven concept representations and sparse representation of the events are learned for complex event recognition; the representations for object body parts and structures are learned for object detection in videos; and the relational motion features and similarity metrics between video pairs are learned simultaneously for action verification. Second, in order to learn discriminative and compact features, we propose a new feature learning method using a deep neural network based on auto encoders. It differs from the existing unsupervised feature learning methods in two ways: first it optimizes both discriminative and generative properties of the features simultaneously, which gives our features a better discriminative ability. Second, our learned features are more compact, while the unsupervised feature learning methods usually learn a redundant set of over-complete features. Extensive experiments with quantitative and qualitative results on…