AbstractsComputer Science

Modeling and design of digital current-mode constant on-time control

by Bin Huang




Institution: Virginia Tech
Department: Electrical and Computer Engineering
Degree: MS
Year: 2008
Keywords: digital current-mode control; constant on-time; quantization; describing function modeling
Record ID: 1829597
Full text PDF: http://scholar.lib.vt.edu/theses/available/etd-03172008-184932/


Abstract

This thesis presents the fundamental issues of the digital controlled DC/DC converter. A lot of challenges exist when you introduce the digital control technique into the control of the DC/DC converter, especially with regards to the voltage regulator module. One issue is the limit cycle oscillation problem caused by the quantization effect from the ADC and DPWM of the digital control chip. Another issue is the delay problem coming from the sample-hold effect. In this thesis, the modeling, analysis and design methodology for the constant frequency voltage-mode control is reviewed. A DPWM (Digital Pulse Width Modulator) model is verified in simulation, which shows what effects the digital control brings to the conventional Pulse Width Modulator. In CPES, the constant on-time control concept is introduced into the digital control of the voltage regulator module. This provides a high resolution of DPWM and allows the digital constant on-time voltage-mode control architecture to be proposed. To limit the oscillation amplitude in the digital control structure, the digital constant on-time current-mode control w/ external ramp is further proposed in CPES. To analyze this structure, a describing function model is proposed for the digital constant on-time current-mode control, which takes both the sample-hold effect and the quantization effect into consideration. This model clearly shows the stability problem caused by the sample-hold effect in the current loop. Using larger rampâs slope values, this stability issue can be alleviated. Based on this model, a design methodology is introduced. By properly designing the current loopâs ADC resolution and the voltage loopâs ADC resolution, the limit cycle oscillation in this structure can be minimized: the digital constant on-time current-mode control will only have the oscillation coming from the sample-hold effect in the current loop, which can be greatly reduced by adding the large slopeâs external ramp to this structure. Simulation verification for this design methodology is provided to prove the concepts. Based on the proposed model, the compensator design is performed. The motivation for the compensator design is to push the bandwidth while satisfying the stability condition and the dynamic no-limit-cycle oscillation condition. When analyzing the case of one sample per switching cycle, there is a certain amount of delay, which compromises the phase characteristics. Our design also requires a large external ramp because it will reduce the oscillation amplitude in our system. From our model, it is quite obvious that the external ramp must have a slope larger than one time that of inductor current down slope. A slope that is too larger will weaker the phase and limit the bandwidth. When using the normal current-mode compensator, like the 1-pole 1-zero compensator, the phase is dropped too much and the bandwidth will be limited too low. If we use a 2-pole 2-zero compensator, the phase can be boosted. However, in this case, the gain margin requirement from the dynamic…