AbstractsEngineering

On robust and adaptive soft sensors.

by Petr Kadlec




Institution: Bournemouth University
Department: School of Design Engineering and Computing
Year: 2009
Keywords: Manufacturing
Record ID: 1398061
Full text PDF: http://eprints.bournemouth.ac.uk/15907/


Abstract

In process industries, there is a great demand for additional process information such as the product quality level or the exact process state estimation. At the same time, there is a large amount of process data like temperatures, pressures, etc. measured and stored every moment. This data is mainly measured for process control and monitoring purposes but its potential reaches far beyond these applications. The task of soft sensors is the maximal exploitation of this potential by extracting and transforming the latent information from the data into more useful process knowledge. Theoretically, achieving this goal should be straightforward since the process data as well as the tools for soft sensor development in the form of computational learning methods, are both readily available. However, contrary to this evidence, there are still several obstacles which prevent soft sensors from broader application in the process industry. The identification of the sources of these obstacles and proposing a concept for dealing with them is the general purpose of this work. The proposed solution addressing the issues of current soft sensors is a conceptual architecture for the development of robust and adaptive soft sensing algorithms. The architecture reflects the results of two review studies that were conducted during this project. The first one focuses on the process industry aspects of soft sensor development and application. The main conclusions of this study are that soft sensor development is currently being done in a non-systematic, ad-hoc way which results in a large amount of manual work needed for their development and maintenance. It is also found that a large part of the issues can be related to the process data upon which the soft sensors are built. The second review study dealt with the same topic but this time it was biased towards the machine learning viewpoint. The review focused on the identification of machine learning tools, which support the goals of this work. The machine learning concepts which are considered are: (i) general regression techniques for building of soft sensors; (ii) ensemble methods; (iii) local learning; (iv) meta-learning; and (v) concept drift detection and handling. The proposed architecture arranges the above techniques into a three-level hierarchy, where the actual prediction-making models operate at the bottom level. Their predictions are flexibly merged by applying ensemble methods at the next higher level. Finally from the top level, the underlying algorithm is managed by means of metalearning methods. The architecture has a modular structure that allows new pre-processing, predictive or adaptation methods to be plugged in. Another important property of the architecture is that each of the levels can be equipped with adaptation mechanisms, which aim at prolonging the lifetime of the resulting soft sensors. The relevance of the architecture is demonstrated by means of a complex soft sensing algorithm, which can be seen as its instance. This algorithm provides mechanisms for…