AbstractsEngineering

Computational Modelling of Mechanical Behaviour of "Elastomer-Steel Fibre" Composite

by Tomáš Lasota




Institution: Brno University of Technology
Department:
Year: 0
Keywords: hyperelasticita; anizotropie; Cosseratovo kontinuum; C1 prvky; Hermitovy polynomy; kompozitní materiál; metoda konečných prvků; hyperelasticity; anisotropy; Cosserat continuum; C1 elements; Hermite polynoms; composite material; finite element method
Record ID: 1097447
Full text PDF: http://hdl.handle.net/11012/25148


Abstract

Tato práce se zabývá výpočtovými simulacemi zkoušek jednoosým tahem a tříbodovým ohybem kompozitního vzorku složeného z elastomerové matrice a ocelových výztužných vláken orientovaných pod různými úhly, jakož i jejich experimentální verifikací. Simulace byly provedeny pomocí dvou různých modelů - bimateriálového a unimateriálového výpočtového modelu. Při použití bimateriálového modelu, který detailně zohledňuje strukturu kompozitu, tzn. pracuje s matricí a jednotlivými vlákny, je zapotřebí vytvořit model každého vlákna obsaženého v kompozitu, což přináší řadu nevýhod (pracná tvorba výpočtového modelu, řádově větší množství elementů potřebných k diskretizaci v MKP systémech a delší výpočetní časy). Na druhé straně v unimateriálovém modelu se nerozlišují jednotlivá vlákna, pracuje se pouze s kompozitem jako celkem tvořeným homogenním materiálem a výztužný účinek vláken je zahrnut v měrné deformační energii. Porovnání experimentů se simulacemi ukázalo, že bimateriálový model je v dobré shodě s experimenty, na rozdíl od unimateriálového modelu, který je schopen poskytnou odpovídající výsledky pouze v případě tahového namáhání. Z tohoto důvodu byl hledán způsob, který by umožnil rozšířit unimateriálový model o ohybovou tuhost výztužných vláken. V roce 2007 Spencer a Soldatos publikovali rozšířený unimateriálový model, který je schopen pracovat nejen s tahovou, ale i ohybovou tuhostí vlákna. Představený obecný model je však založen na Cosseratově teorii kontinua a jeho praktické využití je pro jeho složitost nemožné. Proto byl vytvořen zjednodušený model (částečně podle Spencera a Soldatose) s vlastní navrženou formou měrné deformační energie. Za účelem ověření nového unimateriálového modelu s ohybovou tuhostí vláken byly odvozeny všechny potřebné rovnice a byl napsán vlastní konečno-prvkový řešič. Tento řešič je založen na Cosseratově teorii kontinua a obsahuje zmíněný anizotropní hyperelastický unimateriálový model zahrnující ohybovou tuhost vláken. Vzhledem k tomu, že v případě Cosseratovy teorie jsou při výpočtu potřebné i druhé derivace posuvů, bylo nutné použít tzv. C1 prvky, které mají spojité jak pole posuvů, tak jejich prvních derivací. Nakonec byly provedeny nové simulace s využitím vlastního řešiče, které ukazují, že tuhost vláken lze u nového unimateriálového modelu řídit odpovídající materiálovou konstantou. V závěru práce je pak diskutováno, zda je nový unimateriálový model s ohybovou tuhostí schopen poskytnout stejné výsledky jako model bimateriálový, a to jak při tahovém tak i ohybovém namáhání kompozitního vzorku.; This thesis deals with composite materials made of elastomer matrix and steel reinforcement fibres with various declinations. It presents computational simulations of their mechanical tests in uniaxial tension and three-point bending realized using finite element (FE) method, and their experimental verification. The simulations were carried out using two different models - bimaterial and unimaterial computational models. The bimaterial model reflects structure of the composite in detail, i.e. it…