AbstractsBusiness Management & Administration

Links between management of a market garden and stormwater losses of sediment, nitrogen and phosphorus

by Eric Hollinger




Institution: University of Western Sydney
Department:
Degree: MS
Year: 0
Keywords: stormwater; runoff; fertiliser; soil pollutants; land management; soil nutrient; sediment; nutrient losses; nitrogen; phosphorus
Record ID: 1042813
Full text PDF: http://handle.uws.edu.au:8081/1959.7/306


Abstract

Market gardening is commonly characterised by intensive cultivation, high inputs of both organic and inorganic fertilisers, chemical over/misuse, frequent irrigation, and a low degree of soil cover. While market gardening is readily perceived to be detrimental to waterways, there is remarkably little data to quantify the impacts. Soil and nutrient loss in stormwater runoff varies with soil type, climate and production systems. Therefore local data are needed to determine the impact of market gardening on the Hawkesbury-Nepean. This should lead to a better understanding of how land management influences runoff quantity and quality so that practices can be improved. Objectives of this research were to : quantify sediment, N and P loss and assess the implications for waterways; relate sediment, N and P losses to specific land management practices and assess their impacts on profitability; and, reflect on this research in terms of extension and adoption of better land management. An 8.8 ha property with 6.6 ha of market garden was used as a case study in the Hawkesbury-Nepean Catchment. Soil samples were collected at the beginning and end of the study. Sediment core samples were collected from the drainage channel. A rainfall simulator was used to compare runoff volume from green manure and bare fallow beds. The research produced several recommendations for the extension and adoption of improved land management. In order to reduce sediment, N and P losses in stormwater, the primary focus should be on improving soil and nutrient management, in particular matching fertiliser inputs more closely to nutrient requirements. The secondary focus should be on utilising structural measures, in particular farm dams, to prevent pollutants from entering waterways. The outcome should be decreased costs to the farmer and decreased impacts on waterways. The use of N-fixing green manure to decrease the use of poultry manure should be explored. Master of Science (Hons)