AbstractsEngineering

Impact wave process modeling and optimization in high energy rate explosive welding

by Mohammad Tabatabaee Ghomi




Institution: Mälardalen University
Department: School of Sustainable Development of Society and Technology
Degree: Master's Degree
Year: 2009
Keywords: Explosive welding
Posted: 11/25/2016
Record ID: 2150638
Full text PDF: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A232277&dswid=-3576


Abstract

Impact waves are used in many different industries and are classified according to whether they cause plastic or elastic deformations. In the plastic deformation mode, these waves can be used to produce special electrical joints. In the elastic deformation mode, they can be used to detect leakage or to measure the thickness of pipes. Both modes have applications in offshore technology. In this thesis the application of impact waves in the plastic deformation mode and explosive welding are discussed. In the explosive welding (EXW) process a high velocity oblique impact produced by a carefully controlled explosion occurs between two or more metals. The high velocity impact causes the metals to behave like fluids temporarily and weld together. This process occurs in a short time with a high rate of energy. EXW is a well known method for joining different metals together. It is a multidisciplinary research area and covers a wide range of science and technology areas including wave theory, fluid dynamics, materials science, manufacturing and modeling. Many of the important results in EXW research are obtained from experimentation. This thesis is mainly based on experimental work. However, it begins with a review of the fundamental theory and mechanisms of explosive welding and the different steps of a successful welding operation. Many different EXW tests are done on horizontal and vertical surfaces with unequal surface areas, and on curved surfaces and pipes. The remainder of the thesis evaluates the results of these experiments, measures the main parameters, and shows the results of simulations to verify the experimental results. The thesis ends with a number of suggestions for improving and optimizing the EXW process. One of these improvements is a model for joining metallic plates with unequal surface areas. An Al-Cu joint based on this model is used in the ALMAHDI aluminum factory, a large company in southern Iran that produces more than 200,000 tons of aluminum per year. Improved methods are also suggested for joining curved surfaces. These methods may have extensive applications in pipelines in oil and gas industries, especially in underwater pipes