Dynamic Grasp Adaptation: From Humans To Robots

by Miao Li

Institution: EPFL
Year: 2016
Keywords: Grasp Adaptation; Object-level Impedance Control; Dexterous Manipulation; Tactile Sensing; Learning by Demonstration
Posted: 02/05/2017
Record ID: 2091463
Full text PDF: http://infoscience.epfl.ch/record/215869


The human hand is an amazing tool, demonstrated by its incredible motor capability and remarkable sense of touch. To enable robots to work in a human-centric environment, it is desirable to endow robotic hands with human-like capabilities for grasping and object manipulation. However, due to its inherent complexity and inevitable model uncertainty, robotic grasping and manipulation remains a challenge. This thesis focuses on grasp adaptation in the face of model and sensing uncertainties: Given an object whose properties are not known with certainty (e.g., shape, weight and external perturbation), and a multifingered robotic hand, we aim at determining where to put the fingers and how the fingers should adaptively interact with the object using tactile sensing, in order to achieve either a stable grasp or a desired dynamic behaviour. A central idea in this thesis is the object-centric dynamics: namely, that we express all control constraints into an object-centric representation. This simplifies computa- tion and makes the control versatile to the type of hands. This is an essential feature that distinguishes our work from other robust grasping work in the literature, where generating a static stable grasp for a given hand is usually the primary goal. In this thesis, grasp adaptation is a dynamic process that flexibly adapts the grasp to fit some purpose from the object’s perspective, in the presence of a variety of uncertainties and/or perturbations. When building a grasp adaptation for a given situation, there are two key problems that must be addressed: 1) the problem of choosing an initial grasp that is suitable for future adaptation, and more importantly 2) the problem of design- ing an adaptation strategy that can react adequately to achieve desired behaviour of the grasped object. To address challenge 1 (planning a grasp under shape uncertainty), we propose an approach to parameterizing the uncertainty in object shape using Gaussian Processes (GPs) and incorporate it as a constraint into contact-level grasp planning. To realize the planned contacts using different hands interchangeably, we further develop a prob- abilistic model to predict the feasible hand configurations, including hand pose and finger joints, given the desired contact points only. The model is built using the con- cept of Virtual Frame(VF), and it is independent from the choice of hand frame and object frame. The performance of the proposed approach is validated on two differ- ent robotic hands, an industrial gripper (4 DOF Barrett hand) and a humanoid hand (16 DOF Allegro hand) to manipulate objects of daily use with complex geometry and various texture (a spray bottle, a tea caddy, a jug and a bunny toy). In the second part of this thesis, we propose an approach to the design of adapta- tion strategy to ensure grasp stability in the presence of physical uncertainties of objects(object weight, friction at contacts and external perturbation). Based on an object-level impedance controller, we first design a grasp stability estimator in the… Advisors/Committee Members: Billard, Aude.