AbstractsChemistry

Close-Spaced Vapor Transport and Photoelectrochemistry of Gallium Arsenide for Photovoltaic Applications

by Andrew Ritenour




Institution: University of Oregon
Department:
Year: 2015
Keywords: Crystal Growth; Electrochemistry; Gallium Arsenide; Photovoltaics; Semiconductors; Vapor Transport
Posted: 02/05/2017
Record ID: 2074781
Full text PDF: http://hdl.handle.net/1794/19202


Abstract

The high balance-of-system costs of photovoltaic installations indicate that reductions in absorber cost alone are likely insufficient for photovoltaic electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which both yield high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III-V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the limited scalability of traditional syntheses, which rely on expensive reactors and employ toxic and pyrophoric gas-phase precursors such as arsine and trimethyl gallium. This work describes GaAs films made by close-spaced vapor transport, a potentially scalable technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient to deposit crystalline films with similar electronic properties to GaAs prepared using traditional syntheses. Although close-spaced vapor transport of GaAs was first developed in 1963, there were few examples of GaAs photovoltaic devices made using this method in the literature at the onset of this project. Furthermore, it was unclear whether close-spaced vapor transport could produce GaAs films appropriate for use in photovoltaics. The goal of this project was to create and study GaAs devices made using close-spaced vapor transport and determine whether the technique could be used for production of grid-connected GaAs photovoltaics. In Chapter I the design of the vapor transport reactor, the chemistry of crystal growth, and optoelectronic characterization techniques are discussed. Chapter II focuses on compositional measurements, doping, and improved electronic quality in CSVT GaAs. Chapter III describes several aspects of the interplay between structure and electronic properties of photoelectrochemical devices. Chapter IV addresses heteroepitaxial growth of GaAs on 'virtual' Ge-on-Si substrates. This is a topic of importance for the broader III-V community as well as the photovoltaic community, as Si is the substrate of choice in many areas of industry. This dissertation includes unpublished and previously published co-authored material. Advisors/Committee Members: Johnson, David (advisor).