AbstractsAstronomy & Space Science

The Quest for Active Galactic Nuclei Feedback in Local and Distant Galaxies

by Hassen Mohammed Yesuf

Institution: University of California – Santa Cruz
Year: 2016
Keywords: Astronomy; Astrophysics; Active galaxies; Feedback; Galactic winds; Post-starbursts; Quasar; Starburst
Posted: 02/05/2017
Record ID: 2070351
Full text PDF: http://www.escholarship.org/uc/item/6qw3s9kx


The mechanisms for quenching star formation in galaxies are not yet well understood. Identifying these mechanisms is one of the paramount endeavors in the current state of Astrophysics. The fundamental requirement for quenching is that the cold gas that fuels star formation must be depleted or removed, or heated. AGN feedback is one of the hypothesized quenching agents. In this dissertation, we present our observational studies on AGN feedback.In chapter 2, we will identify very rare galaxy candidates going through a rapid merger evolutionary sequence from disturbed starbursts, followed by fading and relaxed AGN, and to eventually young and quiescent post-starburst galaxies. Most nearby galaxies today are evolving slowly. The era of major galaxy mergers and rapid black hole growth is almost over. However, post-starbursts (PSBs) are rapidly evolving from the blue cloud to the red sequence today. Although they are rare today, integrated over time they may be an important pathway to the red sequence. The transition PSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (> 36 +- 8) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of 200 +- 100 Myr). We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst phase.In chapter 3, we study the cold gas contents of PSBs. We undertook new CO(2-1) observations of 24 Seyfert post-starburst galaxies and together with our data analyzed about 100 previously studied PSBs. When combined with the other samples, our sample is indispensable in sampling the entire starburst-AGN-quenched post-starburst evolutionary sequence. Unlike the previous studies, we find that both star-formation and molecular gas evolutions in PSBs are rapid. These galaxies do not need to linger in the green valley for a longer period of time as previous studies suggested. We find a significantly lower molecular gas detection rate (25%) in our sample than do previous PSBs studies (50-90%). The distribution of gas fraction in Seyfert PSBs is significantly different from young star-forming galaxies. We observe a rapid decline in gas fraction around 0.7Gyr after the starburst. We interpret this far removed event from the peak of the starburst as evidence for a delayed AGN feedback. A key physical manifestation of active galactic nuclei (AGN) feedback is predicted to be powerful galactic winds.…