AbstractsEarth & Environmental Science

Earthquake-induced landsliding

by Odin Marc




Institution: Universität Potsdam
Department:
Year: 2016
Posted: 02/05/2017
Record ID: 2069978
Full text PDF: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/9680


Abstract

Earthquakes deform Earth's surface, building long-lasting topographic features and contributing to landscape and mountain formation. However, seismic waves produced by earthquakes may also destabilize hillslopes, leading to large amounts of soil and bedrock moving downslope. Moreover, static deformation and shaking are suspected to damage the surface bedrock and therefore alter its future properties, affecting hydrological and erosional dynamics. Thus, earthquakes participate both in mountain building and stimulate directly or indirectly their erosion. Moreover, the impact of earthquakes on hillslopes has important implications for the amount of sediment and organic matter delivered to rivers, and ultimately to oceans, during episodic catastrophic seismic crises, the magnitude of life and property losses associated with landsliding, the perturbation and recovery of landscape properties after shaking, and the long term topographic evolution of mountain belts. Several of these aspects have been addressed recently through individual case studies but additional data compilation as well as theoretical or numerical modelling are required to tackle these issues in a more systematic and rigorous manner. This dissertation combines data compilation of earthquake characteristics, landslide mapping, and seismological data interpretation with physically-based modeling in order to address how earthquakes impact on erosional processes and landscape evolution. Over short time scales (10-100 s) and intermediate length scales (10 km), I have attempted to improve our understanding and ability to predict the amount of landslide debris triggered by seismic shaking in epicentral areas. Over long time scales (1-100 ky) and across a mountain belt (100 km) I have modeled the competition between erosional unloading and building of topography associated with earthquakes. Finally, over intermediate time scales (1-10 y) and at the hillslope scale (0.1-1 km) I have collected geomorphological and seismological data that highlight persistent effects of earthquakes on landscape properties and behaviour. First, I compiled a database on earthquakes that produced significant landsliding, including an estimate of the total landslide volume and area, and earthquake characteristics such as seismic moment and source depth. A key issue is the accurate conversion of landslide maps into volume estimates. Therefore I also estimated how amalgamation - when mapping errors lead to the bundling of multiple landslide into a single polygon - affects volume estimates from various earthquake-induced landslide inventories and developed an algorithm to automatically detect this artifact. The database was used to test a physically-based prediction of the total landslide area and volume caused by earthquakes, based on seismological scaling relationships and a statistical description of the landscape properties. The model outperforms empirical fits in accuracy, with 25 out of 40 cases well predicted, and allows interpretation of many outliers in physical terms.… Advisors/Committee Members: Hovius, Niels (advisor).