AbstractsEarth & Environmental Science

Observation of dynamic processes with seismic interferometry

by Martina Gassenmeier




Institution: Universität Leipzig
Department:
Year: 2016
Posted: 02/05/2017
Record ID: 2067962
Full text PDF: http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-203118


Abstract

In this study, seismic interferometry is used to analyze dynamic processes in the Earth’s shallow subsurface caused by environmental processes and ground shaking. In the first part of the thesis, the feasibility of a passive monitoring with ambient seismic noise at the pilot site for CO2 injection in Ketzin is investigated. Monitoring the expansion of the CO2 plume is essential for the characterization of the reservoir as well as the detection of potential leakage. From June 2008 until August 2013, more than 67000 tons of CO2 were injected into a saline aquifer at a depth of about 650 m. Passive seismic data recorded at a seismic network around the injection site was cross-correlated in a frequency range of 0.5-4.5 Hz over a period of 4 years. The frequency band of 0.5-0.9 Hz, in which surface waves exhibit a high sensitivity at the depth of the reservoir, is not suitable for monitoring purposes as it is only weakly excited. In a frequency range of 1.5-3 Hz, periodic velocity variations with a period of approximately one year are found that cannot be caused by the CO2 injection. The prominent propagation direction of the noise wave field indicates a wind farm as the dominant source providing the temporally stable noise field. This spacial stability excludes variations of the noise source distribution as a spurious cause of velocity variations. Based on an amplitude decrease associated with time windows towards later parts of the coda, the variations must be generated in the shallow subsurface. A comparison to groundwater level data reveals a direct correlation between depth of the groundwater level and the seismic velocity. The influence of ground frost on the seismic velocities is documented by a sharp increase of velocity when the maximum daily temperature stays below 0 C. Although the observed periodic changes and the changes due to ground frost affect only the shallow subsurface, they mask potential signals of material changes from the reservoir depths. To investigate temporal seismic velocity changes due to earthquake-related processes and environmental forcing in northern Chile, 8 years of ambient seismic noise recorded by the Integrated Plate Boundary Observatory Chile (IPOC) are analyzed. By autocorrelating the ambient seismic noise field, approximations of the Green’s functions are retrieved and velocity changes are measured with Coda Wave Interferometry. At station PATCX, seasonal changes of seismic velocity caused by thermal stress as well as transient velocity reductions are observed in the frequency range of 4-6 Hz. Sudden velocity drops occur at times of mostly earthquake-induced ground describing the seismic velocity variations based on continuous observations of the local ground acceleration. The model assumes that not only the shaking of large earthquakes causes velocity drops, but any small vibrations continuously induce minor velocity variations that are immediately compensated by healing in the steady state. The shaking effect is accumulated over time and best described by the integrated envelope… Advisors/Committee Members: Korn, Michael (advisor), Sens-Schönfelder, Christoph (advisor), Tilmann, Frederik (advisor), Korn, Michael (referee), Larose, Eric (referee).