AbstractsGeography &GIS

Spaceborne monitoring of Arctic lake ice in a changing climate

by Cristina M. Surdu




Institution: University of Waterloo
Department:
Degree: PhD
Year: 2015
Keywords: Arctic lakes, ice phenology, synthetic aperture radar
Record ID: 2059670
Full text PDF: http://hdl.handle.net/10012/9184


Abstract

Lake ice phenology (timing of ice-on and ice-off) and thickness are changing in response to generally warmer climate conditions at high northern latitudes observed during recent decades. Monitoring changes in the lake ice cover provides valuable evidence in assessing climate variability in the Arctic. To enhance our understanding of the role of lake ice in the Arctic cryosphere and to evaluate the extent to which Arctic lakes have been impacted by the contemporary changing climate, development of a lake ice monitoring system at pan-Arctic scale is needed. While large lakes across the Arctic are currently being monitored through satellite observations, there are extremely sparse and mostly non-existent records tracking the changes in small high-latitude lakes. Employing a combination of spaceborne observations from synthetic aperture radar (SAR) and optical sensors, and simulations from the Canadian Lake Ice Model (CLIMo), this researched aimed to investigate changes in winter ice growth and ice phenology of lakes across the Arctic, focus being given to smaller lakes on the North Slope of Alaska (NSA) and lakes of various sizes in the Canadian Arctic Archipelago (CAA). To determine the changes in the fraction of lakes that freeze to bed (grounded ice) in late winter on the NSA from 1991 to 2011, a time series of ERS-1/2 was analysed. Results show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). This finding is in good agreement with the decrease in ice thickness simulated with CLIMo, a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Model simulations over the same period as SAR acquisitions (1991-2011) indicate a trend toward thinner ice covers by 18-22 cm (no-snow and 53% snow depth scenarios, α = 0.01). The results emphasize the regime shifts that these lakes are currently undergoing, including shorter ice seasons. The longer-term trends (1950-2011) derived from model simulations show a decrease in the ice cover duration by ~ 24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7-18.6 days (α = 0.001). The temporal evolution of backscatter (σ0) from two C-band SAR sensors – Advanced Synthetic Aperture Radar (ASAR) Wide Swath and RADARSAT-2 ScanSAR Wide Swath – was then used to investigate the potential of high temporal-frequency SAR for determining lake ice phenological events (e.g. freeze onset, melt onset and water-clear-of-ice). Results show that combined SAR observations are generally suitable for detection of important lake ice events timing. However, the wide range of incidence angles and to a certain extent the orbit differences between the observations, the wind effect, particularly during fall freeze-up, the low differences in σ0 during transition from a grounded-ice cover to melt onset of ice in early spring, complicate the detection of lake ice phenological events. In order to order to document the…