AbstractsLaw & Legal Studies

Theory of multipartite entanglement for X-states

by Seyed Mohammad Rafsanjani

Institution: University of Rochester
Degree: PhD
Year: 2015
Keywords: Entanglement; Multipartite entanglement; Quantum optics
Record ID: 2059164
Full text PDF: http://hdl.handle.net/1802/29273


More than a century after the seminal work of Schmidt and with all the enthusiasm that have surrounded entanglement ever since the controversial EPR paper, it remains an open challenge to determine whether a given state possesses entanglement or not. The problem is even more difficult if one considers the entanglement among more than two parties, i.e. multipartite entanglement. In the following we first introduce the concept of multipartite entanglement and discuss what it means to quantify the entanglement of a given state. We then introduce a class of multiqubit states, called X-states, and find an algebraic formula for the multipartite entanglement of such states. We show that using this formula one can find a lower bound for the entanglement of any multiqubit state. We then explore the connection between the entanglement and purity in multiqubit states. In the fourth chapter, we introduce a geometrical measure of entanglement and quantify it for the set of GHZ-diagonal states. These are states that can be written as a convex sum of completely bit-flipped states. Using these results we can develop an upper and a lower bound for the entanglement of any density matrix. In the final chapter we survey some of the insights that can be developed using the results of the preceding chapters. We first explore the decay of entanglement in a decoherence scenario where each qubit is experiences decay through an amplitude damping channel, and finally we make a proposal to preserve and control multipartite entanglement through the phenomenon of collapse and revival.