AbstractsGeography &GIS

Abrupt deglacial climate changes in the North Pacific and implications for climate tipping points

by Summer Kate Praetorius




Institution: Oregon State University
Department: Oceanography
Degree: PhD
Year: 2014
Keywords: Paleoclimate; Paleoclimatology  – North Pacific Region
Record ID: 2043981
Full text PDF: http://hdl.handle.net/1957/52462


Abstract

Paleoclimate archives have revealed abrupt climate events that are superimposed on more gradual climate changes throughout the last glacial and deglacial periods. The underlying causes of such rapid climate changes are still poorly understood, but the strong expression of these events in northern hemisphere records likely points to climatic mechanisms of a northern origin. A leading hypothesis for the trigger of these climate fluctuations has been changes in the strength of the Atlantic meridional overturning circulation (AMOC). However, the very rapid nature of some of the observed climate transitions (3-50 years) suggests a potential role for abrupt shifts in atmospheric circulation or nonlinear feedbacks within the climate system. Understanding the relative timing and magnitude of these events in different regions of the globe will help to identify the sources and possible amplifying mechanisms that have led to abrupt climate changes in the past, which will provide insight and constraints on the potential for abrupt climate changes in the future. This dissertation seeks to characterize climate changes occurring in the Northeast Pacific during the last deglaciation, a time period that encompasses the dynamic transition between the last ice age and the modern day interglacial period. So far, high-resolution records with precise chronologies from the North Pacific have been sparse, and paleoclimate models and proxy reconstructions disagree about the deglacial climate changes that are both predicted and observed to have occurred in this region. Marine sediment records from the Gulf of Alaska (GOA) have exceptionally high resolution (~1 cm/yr), making it possible to reconstruct climate changes in unprecedented detail for the North Pacific region. We establish new multi-decadal scale records of surface ocean variability using planktonic oxygen isotopes and sea-surface temperature (SST) estimates based on the alkenone U₃₇[superscript K'] unsaturation index, as well as regional records of ice-rafting and deglacial volcanic activity sourced from the Mt. Edgecumbe volcanic field (MEVF). The age models for these records are constrained by high-precision radiocarbon dating, tephra correlation, and "tuning" to the decadal-scale North Greenland Ice Core Project (NGRIP) oxygen isotope record. We combine new and previously published data from a depth transect of marine sites in the GOA and Northeast Pacific to place surface ocean changes in context of oceanic variability throughout the water column. These reconstructions are then used to evaluate three fundamental questions: 1) what are the timing and patterns of deglacial climate changes in the North Pacific relative to other regions, 2) what are the potential forcing mechanisms for deglacial climate variability in this region, and 3) how does the subsurface ocean respond to and influence abrupt climate change. In chapter two, we compare the timing and patterns of climate changes occurring between the North Pacific and North Atlantic regions. A major debate in the…