AbstractsBiology & Animal Science

A study of C - repeat binding factors (CBF) associated with low temperature tolerance locus in winter wheat.

by Parul Jain




Institution: University of Saskatchewan
Department:
Year: 2014
Keywords: Cold tolerance; C - Repeat Binding Factor (CBF); Protein Expression; Transcription Factor; Winter Wheat
Record ID: 2043948
Full text PDF: http://hdl.handle.net/10388/ETD-2013-04-1001


Abstract

Winter wheat has several advantages over spring varieties, higher (25 % more) yield, efficient use of spring moisture, reduction of soil erosion by providing ground cover during the fall and early spring, rapid initial spring growth to out - compete weeds and circumvent the peak of Fusarium head blight infections by flowering early. Winter wheat is planted in early autumn when it germinates and developing seedlings acclimate to cold. The crown survives under snow cover and in spring rapidly grows into a vigorously growing plant for grain to be harvested in summer. However, the harsh Canadian prairie winters require that winter wheat has increased cold hardiness and improved winter survival to reduce losses from sudden cold snaps during winter and spring. Low temperature (LT) tolerance is one of the major components of cold hardiness. Genetic mapping studies have revealed a major quantitative trait locus (Fr-A2) at wheat chromosome 5A which can explain at least 50 % of LT tolerance in wheat. Physical mapping of 5A LT QTL in a hardy winter wheat cv Norstar revealed a cluster of at least 23 C - repeat binding factors (CBF) coinciding with peak of Fr-A2 QTL. The objective of this study is biochemical, and molecular characterization of CBF co - located at Fr-A2 to identify key CBF participating in conferring LT tolerance in winter wheat. A comparative analysis of CBF gene cluster at the Fr-A2 collinear region among Poaceae members showed an expansion in the number of CBF genes with increased LT tolerance. Rice, a cold sensitive member, had only three CBF genes, whereas cold hardy winter wheat cv Norstar has 23 CBF genes. Amino acid sequence - based cluster analysis of complete CBF genes, or their major functional components such as the AP2 - DNA binding domain and C - terminal trans - activation domain, divide Norstar CBF into Pooideae specific clades. However, analyses of Norstar CBF amino acid sequences of different functional groups revealed a shift in clade members. These results suggest divergence of CBF functions which could lead to possible differences / similarity in the regulon activated by a CBF in a specific group. The 15 CBF genes from winter wheat cv Norstar were expressed in E. coli to produce recombinant TrxHisS - CBF fusion proteins in adequate quantities for structural and functional assays. All CBF fusion proteins could be recovered in the E. coli soluble phase of cell extract, except that the CBF17.0 fusion protein could only be recovered with 6 M urea extraction. Eleven of the 15 CBF fusion proteins were very stable in heat (98 oC), 10 % SDS and 6 M urea treatment. The five other CBF members were very labile under native conditions, but were stable in E. coli cell extracts or when extracted under denaturing conditions. Most of the CBF recombinant proteins in denaturing gel electrophoresis migrated slower than expected from their predicted molecular mass, based on amino acid sequence. The slow migration could be associated to their elongated protein structure as determined by dynamic light…