AbstractsMathematics

Modelling retention time in a clearwell

by Xiaoli Yu




Institution: University of Saskatchewan
Department:
Year: 2010
Keywords: Clearwell; Computational Model; Hydraulic Model; Chlorine Contact Basin
Record ID: 1847634
Full text PDF: http://hdl.handle.net/10388/etd-09202009-221903


Abstract

Clearwells are large water reservoirs often used at the end of the water treatment process as chlorine contact chambers. Contact time required for microbe destruction is provided by residence time within the clearwell. The residence time distribution can be determined from tracer tests and is the one of the key factors in assessing the hydraulic behaviour and efficiency of these reservoirs. This work provides an evaluation of whether the two-dimensional, depth-averaged, finite element model, River2DMix can adequately simulate the flow pattern and residence time distribution in clearwells. One question in carrying out this modelling is whether or not the structural columns in the reservoir need to be included, as inclusion of the columns increases the computational effort required. In this project, the residence time distribution predicted by River2DMix was compared to results of tracer tests in a scale model of the Calgary Glenmore water treatment plant northeast clearwell. Results from tracer tests in this clearwell were available. The clearwell has a serpentine baffle system and 122 square structural columns distributed throughout the flow. A comparison of the flow patterns in the hydraulic and computational models was also made. The hydraulic model tests were carried out with and without columns in the clearwell. The 1:19 scale hydraulic model was developed on the basis of Froude number similarity and the maintenance of minimum Reynolds numbers in the flow through the serpentine system and the baffle wall at the entrance to the clearwell. Fluorescent tracer slug injection tests were used to measure the residence time distribution in the clearwell. Measurements of tracer concentration were taken at the clearwell outlet using a continuous flow-through fluorometer system. Flow visualization was also carried out using dye to identify and assess the dead zones in the flow. It was found that it was necessary to ensure the flow in the scale model was fully developed before starting the tracer tests, and determining the required flow development time to ensure steady state results from the tracer tests became an additional objective of the work. Tests were carried out at scale model flows of 0.85, 2.06, and 2.87 L/s to reproduce the 115, 280, and 390 ML/day flows seen in the prototype tracer tests. Scale model results of the residence time distribution matched the prototype tracer test data well. However, approximately 10.5 hours was required for flow development at the lowest flow rate tested (0.85 L/s) before steady state conditions were reached and baffle factor results matched prototype values. At the intermediate flow, baffle factor results between the scale model and prototype matched well after only 1 h of flow development time, with improvements only in the Morril dispersion index towards prototype values with increased flow development time (at 5 h). Similar results were seen at the highest flow tested. For fully developed flow, there was little change in the baffle factor and dispersion index…