AbstractsChemistry

Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles.

by Bo Zhou




Institution: University of North Texas
Department:
Year: 2004
Keywords: Nanoparticles.; Crystalline polymers.; hydrogel; crystalline; nanoparticle
Record ID: 1742309
Full text PDF: http://digital.library.unt.edu/ark:/67531/metadc4671/


Abstract

In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ~98 °C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear moduli of the gel nanoparticle crystals were measured in the linear stress-yield ranges for the same gel crystals in both acetone and water. Syntheses of particles of different sizes and the relationship between particle size and the color of the gel nanoparticle networks at a constant solid content were also presented. Temperature- and pH- sensitive crystalline PNIPAm-co-AAc hydrogel was prepared using osmosis crosslinking method. Not only the typical Bragg diffraction phenomenon was observed for the hydrogel but also apparent temperature- and pH- sensitive properties were performed. The phase behavior of PNIPAm nanoparticles dispersed in water was also investigated using a thermodynamic perturbation theory combined with lightscattering and spectrometer measurements. It was shown how the volume transition of PNIPAM particles affected the interaction potential and determined a novel phase diagram that had not been observed in conventional colloids. Because both particle size and attractive potential depended on temperature, PNIPAM aqueous dispersion exhibited phase transitions at a fixed particle number density by either increasing or decreasing temperature. The phase transition of PNIPAm-co-AAc colloids was also studied. The results from the comparison between pure PNIPAm and charged PNIPAm colloids showed that the introducing of carboxyl (-COOH) group not only contributed to the synthesis of three-dimensional nanoparticle network but also effectively increased the crystallization temperature and concentration range. The phase transitions at both low and high temperatures were observed from the turbidity change by using UV-Vis spectrometer. Centrifugal vibration method was used to make crystalline PNIPAm-co-AAc dispersion at high concentration (8%). The turbidity test proved the formation of iridescent pattern.