AbstractsBiology & Animal Science

Fabrication and characterisation of highly water permeable ultrafiltration membranes as supports for forward osmosis thin film composite membranes

by Gcina Doctor Vilakati




Institution: University of Johannesburg
Department:
Year: 2015
Keywords: Water - Purification - Membrane filtration; Ultrafiltration; Polymeric composites
Record ID: 1478912
Full text PDF: http://hdl.handle.net/10210/13704


Abstract

The ultrafiltration membranes presented in this study were synthesized using the phase inversion method by casting on a nonwoven fabric. The polymer solutions were mixed with synthetic and bio additives in order to improve the resultant membrane performance. Synthetic additives (polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP)) were compared with a novel and cheap bio additive, lignin. Based on the knowledge that the additives must be soluble in water in order to increase the pore sizes of the membranes, sodium hydroxide was used to elute residual additives that remain in the membrane during coagulation. In order to trace the residual additives remaining, ATR-FTIR was used. Contact-angle analysis and water-absorption experiments were used to elucidate the hydrophilic properties of the prepared membranes. Membranes modified with lignin (Lig) were found to absorb more water (94% water uptake) when compared to the other membranes. In general, the contact angles were found to be low for membranes that were treated with NaOH. Membrane permeability followed the trend, Lig_PSf>PVP_PSf>PEG_PSf which is similar to the trend followed during water uptake. Pore size and pore distribution analysis showed that membranes modified with lignin and PVP had a narrow range (had pore sizes ranging from 10 to 24 nm) compared to that of PEG-PSf membrane (which ranged from 2.5 to 22 nm). A Robeson plot showed that Lig_PSf membranes had high separation factors regardless of the size of the solute being rejected. This study shows the possibility of using cheap and readily available additives to increase the performance of membranes......