AbstractsEarth & Environmental Science

Metamorphism in the contact aureole of the eastern limb of the Bushveld complex, South Africa

by Philane Knowledge Mavimbela




Institution: University of Pretoria
Department:
Year: 2014
Keywords: Silverton Daspoort and Timeball Hill; Eastern Limb of the Bushveld complex; South Africa; UCTD
Record ID: 1453083
Full text PDF: http://hdl.handle.net/2263/41190


Abstract

The 2.06 to 2.054 Ga Bushveld Igneous Complex intruded into the sedimentary rocks of the Transvaal Supergroup and generated an extensive contact metamorphic aureole mainly developed in the upper Pretoria group. The studied samples represent the Silverton Daspoort and Timeball Hill formations and are divisible into garnet bearing hornfels (DY918, DY954 and DY956) and garnet-free staurolite-bearing metapelites (DY916, DY982 and DY987). The garnet-bearing hornfelses marks the garnet zone within the aureole and the garnet formation is controlled by different reactions forming from 490 to 630 0C. On the other hand, the garnet free staurolite-bearing Fe-Al rich metapelites define the staurolite zone restricted to the Timeball Hill formation. The recorded P-T conditions in G0 and G1 garnets of the DY954 hornfels imply that the two garnets formed under different conditions indicating two stages of metamorphism. However, the Lu-Hf isotope systematics of these garnets records a 2061 Ma age for all garnet porphyroblasts in both the DY918 and DY954 hornfelses, which support co-genetic garnet growth regardless of their stratigraphic positions. Therefore, the 2061 Ma garnet age denote the emplacement age of the Lower Zone and Critical Zone magmas which was synchronous with the extrusion of the Rooiberg Group volcanics. The fact that all analysed garnets do not record the 2059 – 2054 intrusion of the Main Zone and Upper Zone magmas probably means that the crystallisation temperatures of the later magma pulse was not significant enough to shift the Lu-Hf isotopic signatures. Euhedral staurolites are widespread within the Fe-Al rich metapelites with grain sizes of up 4mm; texturally the majority of them have been altered or overgrown by biotite and chloritoid. The alteration or of these staurolite porphyroblasts is due to isobaric cooling during uplift, and the St-Bt assemblage represent the peak equilibrium conditions and marks the upper stability limit of the Chl-Ctd assemblage.