AbstractsEngineering

NOVEL METAMATERIAL STRUCTURES FOR MICROWAVE COMPONENT AND CIRCUIT PERFORMANCE ENHANCEMENTS

by Daniel Decle Colin




Institution: University of Manchester
Department:
Year: 2015
Keywords: Metamaterials; Left Handed Transmission Lines; Microwave Filter; Leaky wave antenna; CRLH-TL; D-CRLH-TL; CSRR; CSR
Record ID: 1394207
Full text PDF: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:263003


Abstract

In the thesis presented, three novel uni-planar left handed transmission lines based on Complementary Split Ring Resonators (CSRR) and Complementary Spiral Resonator (CSR) metamaterial particles are proposed for the first time and successfully applied for the performance enhancement of conventional coupled line filters and the design of a full scan leaky wave antenna.Based on the implementation of Complementary Split Ring Resonators (CSRR) a fully planar Composite Right left handed transmission line (CRLH-TL) plus a Dual Composite Right Left Handed transmission line (D-CRLH-TL) are proposed, designed and studied. The CRLH transmission line is realized loading a microstrip host line with CSRR metamaterial particles and capacitive gaps on the conductor strip of the line, while the D-CRLH transmission line is built bridging the capacitive gaps between the CSRR's with inductive connections to induce dual propagation properties in the structure.A further performance enhancement is achieved by a second proposal based on the implementation of Complementary Spiral Resonators (CSRs). The studies applied to the structure reveal that conditions for D-CRLH propagation are created in a transmission line composed only by CSR metamaterial resonant particles as the result of the unique electromagnetic properties acquired by the CSRs etched on the conductor line of a microstrip waveguide.The CSRR/CSR based D-CRLH transmission lines proposed are applied in the design of two enhanced coupled line filters. The implementation is possible for the first time in this work as result of the highly versatile layout features of the left handed transmission lines proposed which among other important geometrical features, allows couplings in both sides of the structure. Enhanced filtering features are reached by the metamaterial based coupled line filters proposed in terms of selectivity and size reduction in comparison with conventional coupled line filters. In the case of the CSRR loaded metamaterial coupled line filter a size reduction of 49% is achieved compared with a filter of similar performance. A further enhancement is reached by the second coupled filter proposed based on CSR metamaterial resonant particles. The CSR coupled filter proposed reach a roll off rate improvement of 8 dB/GHz and size reduction of 43% in comparison with a conventional coupled line filter of the same order. When this is compared against a conventional coupled line filter of similar performance but higher order, a remarkable size reduction of 77% is achieved by the proposed CSR coupled line filter.Finally, the CSR loaded D-CRLH transmission line is applied in the design of a fully planar leaky wave antenna. Using the CSR structures etched on the conductor line of a microstrip as part of the radiation mechanism altogether with the D-CRLH propagation features of the structure. A full scan radiation pattern is created with backward, forward and broadside radiation as result of the left handed propagation band, right handed propagation band and the balanced…