Risk Measures and Dependence Modeling in Financial Risk Management

by Kristofer Eriksson

Institution: Umeå University
Year: 2014
Keywords: Dependence; Correlation; Copulas; Risk measures; Extreme value theory; Natural Sciences; Mathematics; Probability Theory and Statistics; Naturvetenskap; Matematik; Sannolikhetsteori och statistik; Master of Science Programme in Engineering Physics; Civilingenj├Ârsprogrammet i Teknisk fysik; Examensarbete i teknisk fysik; Examensarbete i teknisk fysik
Record ID: 1360214
Full text PDF: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-85185


In financial risk management it is essential to be able to model dependence in markets and portfolios in an accurate and efficient way. A high positive dependence between assets in a portfolio can be devastating, especially in times of crises, since losses will most likely occur at the same time in all assets for such a portfolio. The dependence is therefore directly linked to the risk of the portfolio. The risk can be estimated by several different risk measures, for example Value-at-Risk and Expected shortfall. This paper studies some different ways to measure risk and model dependence, both in a theoretical and empirical way. The main focus is on copulas, which is a way to model and construct complex dependencies. Copulas are a useful tool since it allows the user to separately specify the marginal distributions and then link them together with the copula. However, copulas can be quite complex to understand and it is not trivial to know which copula to use. An implemented copula model might give the user a "black-box" feeling and a severe model risk if the user trusts the model too much and is unaware of what is going. Another model would be to use the linear correlation which is also a way to measure dependence. This is an easier model and as such it is believed to be easier for all users to understand. However, linear correlation is only easy to understand in the case of elliptical distributions, and when we move away from this assumption (which is usually the case in financial data), some clear drawbacks and pitfalls become present. A third model, called historical simulation, uses the historical returns of the portfolio and estimate the risk on this data without making any parametric assumptions about the dependence. The dependence is assumed to be incorporated in the historical evolvement of the portfolio. This model is very easy and very popular, but it is more limited than the previous two models to the assumption that history will repeat itself and needs much more historical observations to yield good results. Here we face the risk that the market dynamics has changed when looking too far back in history. In this paper some different copula models are implemented and compared to the historical simulation approach by estimating risk with Value-at-Risk and Expected shortfall. The parameters of the copulas are also investigated under calm and stressed market periods. This information about the parameters is useful when performing stress tests. The empirical study indicates that it is difficult to distinguish the parameters between the stressed and calm market period. The overall conclusion is; which model to use depends on our beliefs about the future distribution. If we believe that the distribution is elliptical then a correlation model is good, if it is believed to have a complex dependence then the user should turn to a copula model, and if we can assume that history will repeat itself then historical simulation is advantageous.