AbstractsEngineering

Enabling Network-Aware Cloud Networked Robots with Robot Operating System

by Fredrik Hans Nordlund




Institution: KTH Royal Institute of Technology
Department:
Year: 2015
Keywords: CNR; ROS; network awareness; cloud; open-source; TurtleBot; CNR; ROS; nätverksmedvetenhet; moln; öppen källkod; TurtleBot; Engineering and Technology; Electrical Engineering, Electronic Engineering, Information Engineering; Communication Systems; Teknik och teknologier; Elektroteknik och elektronik; Kommunikationssystem; Civilingenjörsexamen - Informationsteknik; Master of Science in Engineering - Information and Communication Technology
Record ID: 1349258
Full text PDF: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160877


Abstract

During the recent years, a new area called Cloud Networked Robotics (CNR) has evolved from conventional robotics, thanks to the increasing availability of cheap robot systems and steady improvements in the area of cloud computing. Cloud networked robots refers to robots with the ability to offload computation heavy modules to a cloud, in order to make use of storage, scalable computation power, and other functionalities enabled by a cloud such as shared knowledge between robots on a global level. However, these cloud robots face a problem with reachability and QoS of crucial modules that are offloaded to the cloud, when operating in unstable network environments. Under such conditions, the robots might lose the connection to the cloud at any moment; in worst case, leaving the robots “brain-dead”. This thesis project proposes a machine learning-based network aware framework for a cloud robot, that can choose the most efficient module placement based on location, task, and the network condition. The proposed solution was implemented upon a cloud robot prototype based on the TurtleBot 2 robot development kit, running Robot Operating System (ROS). A continuous experiment was conducted where the cloud robot was ordered to execute a simple task in the laboratory corridor under various network conditions. The proposed solution was evaluated by comparing the results from the continuous experiment with measurements taken from the same robot, with all modules placed locally, doing the same task. The results show that the proposed framework can potentially decrease the battery consumption by 10% while improving the efficiency of the task by 2.4 seconds (2.8%). However, there is an inherent bottleneck in the proposed solution where each new robot would need 2 months to accumulate enough data for the training set, in order to show good performance. The proposed solution can potentially benefit the area of CNR if connected and integrated with a shared-knowledge platform which can enable new robots to skip the training phase, by downloading the existing knowledge from the cloud. ; Under de senaste åren har ett nytt forskningsområde kallat Cloud Networked Robotics (CNR) växt fram inom den konventionella robottekniken, tack vare den ökade tillgången på billiga robotsystem och stadiga framsteg inom området cloud computing. Molnrobotar syftar på robotar med förmågan att flytta resurstunga moduler till ett moln för att ta del av lagringskapaciteten, den skalbara processorkraften och andra tjänster som ett moln kan tillhandahålla, t.ex. en kunskapsdatabas för robotar över hela världen. Det finns dock ett problem med dessa sorters robotar gällande nåbarhet och QoS för kritiska moduler placerade på ett moln, när dessa robotar verkar i instabila nätverksmiljöer. I ett sådant scenario kan robotarna när som helst förlora anslutningen till molnet, vilket i värsta fall lämnar robotarna hjärndöda. Den här rapporten föreslår en maskininlärningsbaserad nätverksmedveten ramverkslösning för en molnrobot, som kan välja de…