AbstractsEngineering

Investigation and Study of Crosstalk

by Krishna Prasad Rao Pasupuleti




Institution: Linköping University
Department:
Year: 2015
Keywords: Överhörning; Crosstalk; Electricfield coupling; magneticfield coupling; capacitiv coupling; kapacitiv koppling; Inductive coupling; induktiv koppling.; Engineering and Technology; Other Engineering and Technologies; Other Engineering and Technologies not elsewhere specified; Teknik och teknologier; Annan teknik; Övrig annan teknik; Technology; teknik; Elektroteknik; Electrical Engineering
Record ID: 1342012
Full text PDF: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-114536


Abstract

Crosstalk is defined as an unwanted coupling between the conductors. By this it is meant that signals from one of the signal conductors (a generator in this case) are coupled to another signal conductor (receptor), or conductors (receptors), depending on the number of conductors in the vicinity of the generator. Crosstalk in this way affects the signal level on the receptor and thereby affects the total system performance within the system. This can happen in several ways, one of which is through edge coupling. Edge coupling is a process where two signal conductors are placed beside each other in the same layer while the ground conductor could have been placed either under these conductors, in a separate layer like Mclin (Microstrip coupled lines) and Sclin (Coupled striplines), or beside the signal conductors as in Cpwcpl2 (Coplanar wave guide coupled lines). This then means that edge coupling occurs through the sides where the generator and the receptor are facing each other. Broadside coupling is another way, where it occurs when the signal conductors are broadside faced to each other in different layers with reference planes above and below these signal conductors. Coupling of the signals from the generator to the receptor can occur through capacitive coupling or inductive coupling. Capacitive coupling, also known as electrical coupling, occurs due to the difference in the characteristic impedance of the generator (usually 50 or 100 §Ù) and its heavy load (1 k§Ù or more) which results in high voltage difference between the generator and the reference conductor (ground). This leads to the creation of a charge across the generator and the receptor-facing sides and finally results in the electric field coupling between them. On the other hand, inductive coupling, also known as magnetic coupling, occurs when the load is less than the characteristic impedance of the generator, and this thereby results in a heavy current flow through the generator which in return results in a strong magnetic field around itself and so leads to magnetic coupling to the receptor. The aim in this thesis is to measure both the capacitive and inductive coupling load¡¯s impacts on both the edge coupling and the broadside coupling models through crosstalk on the receptor. This thesis starts with the background and corresponding theory and equations to the crosstalk coupling. Later on it tests both the edge- and broadside coupling models with different physical properties exploitation. Inductive and capacitive loads are used to measure the resulting crosstalk coupling. Particularly to see the effect of capacitive and inductive coupling in reality in multi layered PCB, a Sbclin (Broadside coupled striplines) model has been used with different angular placement of the generator. Finally mclin physical models are compared with the simulated models and corresponding differences are discussed. It can be concluded that crosstalk effect increases or decreases with physical properties exploitation. Crosstalk also increases with the wrong…