AbstractsEarth & Environmental Science

Non-dimensional gradient functions for water vapor and carbon dioxide in the marine boundary layer; Dimensionslösa gradientfunktioner för vattenånga och koldioxid i det marina gränsskiktet

by Caroline Vahlberg




Institution: Uppsala University
Department:
Year: 2015
Keywords: Monin-Obukhov similarity theory; non-dimensional gradient functions; water vapor; carbon dioxide; marine boundary layer; turbulent fluxes; Monin-Obukhov similaritetsteori; dimensionslösa gradientfunktioner; vattenånga; koldioxid; marina gränsskiktet; turbulenta flöden; Natural Sciences; Earth and Related Environmental Sciences; Meteorology and Atmospheric Sciences; Naturvetenskap; Geovetenskap och miljövetenskap; Meteorologi och atmosfärforskning; Masterprogram i fysik; Master Programme in Physics
Record ID: 1339832
Full text PDF: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251400


Abstract

A better understanding of the exchange processes taking place over the oceans is of great importance since the oceans cover about 70 % of the Earth’s surface. With better knowledge the turbulent fluxes can be more accurate parameterized, which is essential in order to improve the weather- and climate models. In this study, the non-dimensional gradient functions for water vapor (Φ<sub>q</sub>) and carbon dioxide (Φc) in the marine boundary layer have principally been studied. The quality of the instrumentation used in the study has also been evaluated. The study is mainly based on tower measurements of turbulent fluxes and vertical profiles of water vapor and carbon dioxide, taken from the Östergarnsholm Island located in the Baltic Sea. The measurements have been shown to represent open-sea conditions for most situations when the winds are coming from the east-south sector, even though the measurements are obtained over land. It was found that the best fitting non-dimensional gradient functions for water vapor during unstable conditions were Φq = 2(1–18 z / L )<sup>–1/2</sup> and Φ<sub>q </sub>= 1.2(1–14 z / L )<sup> –1/2</sup> at the 10 and 26 m level on the tower, respectively. No unique relationship could be established for Φ<sub>q</sub> during stable conditions. Φ<sub>q </sub>showed a dependence with wind direction and could for winds coming from the sector 80°– 160° be described with the relationship Φ<sub>q </sub>= 1.2 + 10.7 z / L during stable conditions. For the wind sector 50°– 80° the relationship for Φ<sub>q </sub>was found to be Φ<sub>q</sub> = 1.8 + 7.1 z/L during stable conditions. A high degree of scatter was apparent in the calculated values of Φc during both stable and unstable conditions and did not seem to show any Monin-Obukhov similarity behaviour. The results indicate that there might be measurement problems with the instruments measuring the turbulent fluxes of carbon dioxide, but further studies are needed in order to draw a firm conclusion about the quality of the instruments. The profile measurements of water vapor seem to work fine, but more studies of carbon dioxide are needed before a statement can be made regarding the quality of the profile measurements of carbon dioxide. ; Skiktet närmast marken kallas det atmosfäriska gränsskiktet och karaktäriseras av turbulens, dvs. oregelbundna virvelrörelser av olika storlekar som uppstår av vindens friktion mot jordytan (land eller hav) eller av luftens uppvärmning av jordytan. Genom turbulens kan utbyte av värme, vattenånga, momentum, koldioxid och andra gaser ske mellan jordytan och atmosfären. Turbulenta utbytesprocesser i det atmosfäriska gränsskiktet är viktiga att studera för att kunna beräkna ett turbulent flöde från en yta i väder- och klimatmodeller. Genom en ökad förståelse av flödena kan dessa bli mer noggrant parametriserade (dvs. en fysikalisk process som sker på en mindre skala eller är för komplex för att kunna beskrivas i en modell förenklas…