AbstractsBiology & Animal Science

Towards understanding mastrevirus dynamics and the use of viral metagenomic approaches to identify novel gemini-like circular DNA viruses

by Simona Kraberger




Institution: University of Canterbury
Department: Biological Sciences
Year: 2015
Keywords: Geminivirus; Mastrevirus; single-stranded DNA virus; Next-generation sequencing; Viral metagenomics
Record ID: 1306968
Full text PDF: http://hdl.handle.net/10092/10235


Abstract

Mastreviruses (family Geminiviridae) are plant-infecting viruses with circular single-stranded (ss) DNA genomes (~2.7kb). The genus Mastrevirus is comprised of thirty-two species which are transmitted by leafhoppers belonging to the genus Cicadulina. Mastreviruses are widely distributed and have been found in the Middle East, Europe, Asia, Australia, Africa and surrounding islands. Only one species, dragonfly-associated mastrevirus has so far been identified in the Americas, isolated from a dragonfly in Puerto Rico. Species can be group based on the host(s) they infect, those which infect monocotyledonous (monocot) plants and those which infect dicotyledonous (dicot) plants. In recent years many new mastrevirus species have been discovered. Several of these new discoveries can largely been attributed to the development of new molecular tools. The current state of sequencing platforms has made it affordable and easier to characterise mastreviruses at a genome level thus allowing scientists to delve deeper into understanding the dynamics of mastreviruses. A few mastrevirus species have been identified as important agricultural pathogens and as a result have been the focus of much of the mastrevirus research. Maize streak virus, strain A (MSV-A) has been the most extensively studied due to the devastating impact it has on maize production in Africa. Studies have shown that MSV-A likely emerged as a pathogen of maize less than 250 years following introduction of maize in Africa by early European settlers. There is compelling evidence to suggest that MSV-A is likely the result of recombination events between wild grass adapted MSV strains. It therefore is equally important to monitor viruses infecting non-cultivated plants in order to gain a greater understanding of the epidemiological dynamics of mastreviruses, which in turn is essential for implementing disease management strategies. The objective of the research undertaken as part of this PhD thesis was to investigate global mastrevirus dynamics focusing on diversity, host and geographic ranges, mechanisms of evolution, phylogeography and possible origins of these viruses. In addition to this a viral metagenomic approach was used in order to identify novel mastreviruses or mastrevirus-like present in New Zealand. The dynamics of the monocot-infecting mastreviruses are investigated in Chapter Two and Three. The work described in these two chapters focus mainly on mastreviruses which infect non-cultivated grasses in Africa and Australia, a total of 161 full mastrevirus genomes were recovered collectively in the two studies. Chapter Two reveals a high level of mastrevirus diversity present in Australia with the discovery of four new species and several new strains of previously characterised species. An extensive sampling effort in Africa undertaken in Chapter Three reveals a broader host range and geographic distribution of the African monocot-infecting mastreviruses than previously documented. Mosaic patterns of recombination are evident among both the Australian and…