AbstractsEngineering

Life Cycle Assessment of High Speed Rail Electrification Systems and Effects on Corridor Planning

by Babak Eslami Ebrahimi




Institution: Norwegian University of Science and Technology
Department:
Year: 2014
Record ID: 1293926
Full text PDF: http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26852


Abstract

Different environmental analyses are so far allocated to assess emissions corresponding to high-speed rail infrastructure in era of environmental concern for maximize mobility and accessibility. However, electrification of HSR due to various components is intricate and roughly in detail in existing inventories. Predominantly, this is due to this fact that the existing inventories associated to HSR infrastructure focus on climate gases that lead to concrete and steel as the dominant input materials.Life cycle assessment (LCA), as a useful tool in evaluation of environmental impacts related to products and/or activities, can be helpful to deliver a better understanding of a defined system and later on can assist in decision making (by comparing alternative cases with each other).In this thesis, a complete LCA of HSR electrification is performed under PCR guideline that embraces a 60-year lifetime with a functional unit of one kilometer for three life cycle phases that are: construction, maintenance & renewal, and disposal. The results from this study are shown in six-impact categories (with two additional impact categories that are not mentioned in the PCR guideline). In addition, the results from the LCA of HSR electrification are applied to 12 alignments (as a projection of environmental analysis of Norwegian HSR) to illustrate the effect of HSR electrification on corridor planning.Regardless of results for either the functional unit of one kilometer or corridor planning, the relative results show that construction and maintenance & renewal by far are the main sources of potential impacts, and disposal (due to only transport of materials for their end-of-life treatment) has a fraction of impact through the entire lifetime of HSR electrification in all the six-impact categories. The main input materials associated with high impacts in electrification of HSR infrastructure are: copper, diesel, aluminium (cable), steel (low-alloyed), and UPS (batteries) that for different impact categories and life cycle phases the effect from each input material is varying. Copper projected that it has the highest contribution in impact categories human toxicity, metal depletion, freshwater eutrophication, and terrestrial acidification in both construction and maintenance & renewal. Aluminium (cable), and steel (low-alloyed) perform their highest contributions in impact categories climate change and photochemical oxidation formation in the construction phase; however, diesel shows a high impact in the same impact categories (as they are the same for aluminium (cable) and steel (low-alloyed)) in the maintenance & renewal phase. Moreover, UPS (batteries), due to having (relatively) high amount of lead, corresponds to high impact in impact categories terrestrial acidification, climate change, and photochemical oxidation formation in the maintenance & renewal life cycle phase.The study also considers the effect of section type and design-speed for the LCA of HSR electrification. It shows that the potential impact…