AbstractsEngineering

Consolidation Analysis of Sri Lankan Peaty Clay using Elasto-viscoplastic Theory

by Wanigavitharana Asiri Karunawardena




Institution: Kyoto University
Department:
Year: 2007
Keywords: Peat; Elasto-viscoplasticity; Consolidation; Structural Degradation; Finite Strain
Record ID: 1236377
Full text PDF: http://hdl.handle.net/2433/49147


Abstract

学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2841号 ; 請求記号: 新制/工/1418 ; 整理番号: 25526 " The consolidation of peat is complex due to the resultant large strain associated with the highly compressible nature of natural peat deposits and to the rapid changes in soil properties during the consolidation process. In addition, the consolidation process is further complicated by the occurrence of secondary compression which significantly contributes to the overall settlement of peaty soil. Therefore, it is necessary to take these properties into account in order to obtain better predictions from peat consolidation analyses. In the present study, the consolidation behavior of peaty clay found in Sri Lanka is extensively studied using a model based on the elasto-viscoplastic theory. The model can describe the prominent creep behavior of peaty soil as a continuous process. In addition, the model can accommodate the effect of structural degradation on the consolidation process. The analysis takes into account all the main features involved in the peat consolidation process, namely, finite strain, variable permeability, and the effect of secondary compression. Also, it considers the variable compressibility for stage-constructed embankments which exert high levels of pressure on the peaty subsoil. The constitutive equations used in the model and the procedure adapted to account for the above-mentioned features of the analysis are described. The constitutive model is based on Perzyna’s type viscoplastic theory and the Cambridge elasto-plastic theory combined with empirical evidence. In the finite element formulations, which are based on the finite deformation theory, an updated Lagrangian method is adopted. A description of the material parameters used in the model and the procedures applied to evaluate them, with standard laboratory and field tests, are explained. In addition, a performance of the model incorporating the original and the modified Cam-clay theory is evaluated by simulating triaxial test results. A comparison shows that with the present definition of the parameters, the original model yields more representative results than the model based on the modified Cam-clay theory. Initially, the capability of the constitutive model to capture the consolidation behavior is verified using the consolidation model test data on peaty clay found in Sri Lanka. It is confirmed that the constitutive model is able to predict the observed creep characteristics and the effect of sample thickness on settlement predictions for the material under consideration. The performance of the model in predicting the consolidation behavior under field conditions is studied using field data on instrumented earth fill constructed on peaty clay. One-dimensional compression is assumed for the peaty clay due to the large plane area of the fill. Separate analyses are carried out by the model considering the infinitesimal strain theory, the finite strain theory, and the finite strain theory together with the effect of…