AbstractsBusiness Management & Administration

LU-SGS Implicit Scheme For A Mesh-Less Euler Solver

by Manish Kumar Singh

Institution: Indian Institute of Science
Year: 2010
Keywords: Aerodynamics; Mesh-Less Euler Solver; Least Square Kinetic Upwind Method (LSKUM); Kinetic Flux Vector Splitting (KFVS); LU-SGS Implicit Method; Implicit Time Integration; Meshless MCIR Method; Least Square Finite Difference Upwind Method; Aeronautics
Record ID: 1210446
Full text PDF: http://hdl.handle.net/2005/2397


Least Square Kinetic Upwind Method (LSKUM) belongs to the class of mesh-less method that solves compressible Euler equations of gas dynamics. LSKUM is kinetic theory based upwind scheme that operates on any cloud of points. Euler equations are derived from Boltzmann equation (of kinetic theory of gases) after taking suitable moments. The basic update scheme is formulated at Boltzmann level and mapped to Euler level by suitable moments. Mesh-less solvers need only cloud of points to solve the governing equations. For a complex configuration, with such a solver, one can generate a separate cloud of points around each component, which adequately resolves the geometric features, and then combine all the individual clouds to get one set of points on which the solver directly operates. An obvious advantage of this approach is that any incremental changes in geometry will require only regeneration of the small cloud of points where changes have occurred. Additionally blanking and de-blanking strategy along with overlay point cloud can be adapted in some applications like store separation to avoid regeneration of points. Naturally, the mesh-less solvers have advantage in tackling complex geometries and moving components over solvers that need grids. Conventionally, higher order accuracy for space derivative term is achieved by two step defect correction formula which is computationally expensive. The present solver uses low dissipation single step modified CIR (MCIR) scheme which is similar to first order LSKUM formulation and provides spatial accuracy closer to second order. The maximum time step taken to march solution in time is limited by stability criteria in case of explicit time integration procedure. Because of this, explicit scheme takes a large number of iterations to achieve convergence. The popular explicit time integration schemes like four stages Runge-Kutta (RK4) are slow in convergence due to this reason. The above problem can be overcome by using the implicit time integration procedure. The implicit schemes are unconditionally stable i.e. very large time steps can be used to accelerate the convergence. Also it offers superior robustness. The implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme is very attractive due to its low numerical complexity, moderate memory requirement and unconditional stability for linear wave equation. Also this scheme is more efficient than explicit counterparts and can be implemented easily on parallel computers. It is based on the factorization of the implicit operator into three parts namely lower triangular matrix, upper triangular matrix and diagonal terms. The use of LU-SGS results in a matrix free implicit framework which is very economical as against other expensive procedures which necessarily involve matrix inversion. With implementation of the implicit LU-SGS scheme larger time steps can be used which in turn will reduce the computational time substantially. LU-SGS has been used widely for many Finite Volume Method based solvers. The split flux Jacobian…