AbstractsPhysics

Preparation, Characterization And Ionic Conductivity Studies On Certain Fast Ionic Conductors

by Madhurjya Modhur Borgohain




Institution: Indian Institute of Science
Department:
Year: 2009
Keywords: Ionic Conductors; Conductivity (Heat); Entropy (Thermodynamics); Polymer Conductors; Polymer Electrolytes - Conductivity; Nanocomposite Polymer Electrolytes; Hydrotalcite; Solid Polymer Electrolytes; (MPEG)xLiClO4; (MPEG)xLiCF3SO3; Li+ Doped Hydrotalcite; Solid Polymer Electrolyte; Fast Ionic Conductor; Ionic Conductivity; Chemical Physics
Record ID: 1208619
Full text PDF: http://hdl.handle.net/2005/1016


Abstract

Fast ionic conductors, i.e. materials in which charge transport mainly occurs through the motion of ions, are an important class of materials with immense scope for industrial applications. There are different classes of fast ionic conductors e.g. polymer electrolytes, glasses, oxide ion conductors etc. and they find applications such as solid electrolytes in batteries, in fuel cells and in electro active sensors. There are mixed conducting materials as well which have both ions and electrons as conducting species that are used as electrode materials. Specifically, polymer electrolytes 1−3 have been in use in lithium polymer batteries, which have much more advantages compared to other secondary batteries. Polymer electrolyte membranes have been in use in direct methanol fuel cells (DMFC). The membranes act as proton conductors and allow the protons produced from the fuel (methanol) to pass through. Oxide ion conductors are used in high temperature solid oxide fuel cells (SOFC) and they conduct via oxygen ion vacancies. Fuel cells are rapidly replacing the internal combustion engines, because they are more energy efficient and environment friendly. The present thesis is concerned with the preparation, characterization and conductivity studies on the following fast ionic conductors: (MPEG)xLiClO4, (MPEG)xLiCF3SO3 where (MPEG) is methoxy poly(ethylene glycol), the hydrotalcite [Mg0.66Al0.33(OH)2][(CO3)0.17.mH2O] and the nanocomposite SPE, (PEG)46 LiClO4 with dispersed nanoparticles of hydrotalcite. We also present our investigations of spin probe electron spin resonance (SPESR) as a possible technique to determine the glass transition temperature (Tg) of polymer electrolytes where the conventional technique of Tg determination, namely, differential scanning calorimetry, (DSC), is not useful due to the high crystallinity of the polymers. In the following we summarize the main contents of the thesis. In Chapter 1 we provide a brief introduction to the phenomenon of fast ionic conduction. A description of the different experimental techniques used as well as the relevant theories is also given in this chapter. In most solid polymer electrolytes (SPE), the usability is limited by the low value of the ionic conductivity. A number of different routes to enhance the electrical, thermal and mechanical properties of these materials is presently under investigation. One such route to enhance the ionic conductivity in polymer electrolytes is by irradiating the polymer electrolyte with gamma rays, electron beam, ion beams etc. In Chapter 2, we describe our work on the effect of electron beam (e-beam) irradiation on the solid polymer electrolytes (MPEG)xLiClO4 and (MPEG)xLiCF3SO3. The polymer used is methoxy poly(ethylene glycol) or poly(ethylene glycol) methyl ether with a molecular weight 2000. Salts used are LiClO4 and LiCF3SO3. ’x’ in the subscript is a measure of the salt concentration; it is the ratio of the number of ether oxygens in the polymer chain to that of the Li+ ion. ’x’ values chosen are 100, 46, 30 and 16. Nearly…