AbstractsEngineering

Identification Tools For Smeared Damage With Application To Reinforced Concrete Structural Elements

by N Gopala Krishnan




Institution: Indian Institute of Science
Department:
Year: 2009
Keywords: Reinforced Concrete Structures; Damage Analysis (Civil Engineering); Concrete Beams - Damage Identification; Reinforced Concrete Beams; Structural Health Monitoring; Concrete Structures - Damage; Wavelet Analysis; Damage Indicators; Seismic Damage; Radial Basis Function Network (RBFN); Structural Engineering
Record ID: 1204365
Full text PDF: http://hdl.handle.net/2005/988


Abstract

Countries world-over have thousands of critical structures and bridges which have been built decades back when strength-based designs were the order of the day. Over the years, magnitude and frequency of loadings on these have increased. Also, these structures have been exposed to environmental degradation during their service life. Hence, structural health monitoring (SHM) has attracted the attention of researchers, world over. Structural health monitoring is recommended both for vulnerable old bridges and structures as well as for new important structures. Structural health monitoring as a principle is derived from condition monitoring of machinery, where the day-to-day recordings of sound and vibration from machinery is compared and sudden changes in their features is reported for inspection and trouble-shooting. With the availability of funds for repair and retrofitting being limited, it has become imperative to rank buildings and bridges that require rehabilitation for prioritization. Visual inspection and expert judgment continues to rule the roost. Non-destructive testing techniques though have come of age and are providing excellent inputs for judgment cannot be carried out indiscriminately. They are best suited for evaluating local damage when restricted areas are investigated in detail. A few modern bridges, particularly long-span bridges have been provided with sophisticated instrumentation for health monitoring. It is necessary to identify local damages existing in normal bridges. The methodology adopted for such identification should be simple, both in terms of investigations involved and the instrumentation. Researchers have proposed various methodologies including damage identification from mode shapes, wavelet-based formulations and optimization-based damage identification and instrumentation schemes and so on. These are technically involved but may be difficult to be applied for all critical bridges, where the sheer volume of number of bridges to be investigated is enormous. Ideally, structural health monitoring has to be carried out in two stages: (a) Stage-1: Remote monitoring of global damage indicators and inference of the health of the structure. Instrumentation for this stage should be less, simple, but at critical locations to capture the global damage in a reasonable sense. (b) Stage -2: If global indicators show deviation beyond a specified threshold, then a detailed and localized instrumentation and monitoring, with controlled application of static and dynamic loads is to be carried out to infer the health of the structure and take a decision on the repair and retrofit strategies. The thesis proposes the first stage structural health monitoring methodology using natural frequencies and static deflections as damage indicators. The idea is that the stage-1 monitoring has to be done for a large number of bridges and vulnerable structures in a remote and wire-less way and a centralized control and processing unit should be able to number-crunch the in-coming data automatically and the…