AbstractsComputer Science

Versatile architectures for cryptographic systems

by Dimitrios Schinianakis




Institution: University of Patras; Πανεπιστήμιο Πατρών
Department:
Year: 2013
Keywords: Κρυπτογραφία δημόσιου κλειδιού; Αριθμητική υπολοίπων; Αριθμητική υπολογιστών; Κρυπτανάλυση; Cryptography; Cryptanalysis; Computer arithmetics; Residue number system
Record ID: 1154464
Full text PDF: http://hdl.handle.net/10442/hedi/31564


Abstract

This doctoral thesis approaches the problem of designing versatile architectures for cryptographic hardware. By the term versatile we define hardware architectures capable of supporting a variety of arithmetic operations and algorithms useful in cryptography, with no need to reconfigure the internal interconnections of the integrated circuit. A versatile architecture could offer considerable benefits to the end-user. By embedding a variety of crucial operations in a common architecture, the user is able to switch seamlessly the underlying cryptographic protocols, which not only gives an added value in the design from flexibility but also from practicality point of view. The total cost of a cryptographic application can be also benefited; assuming a versatile integrated circuit which requires no additional circuitry for other vital operations (for example input–output converters) it is easy to deduce that the total cost of development and fabrication of these extra components is eliminated, thus reducing the total production cost. We follow a systematic approach for developing and presenting the proposed versatile architectures. First, an in-depth analysis of the algorithms of interest is carried out, in order to identify new research areas and weaknesses of existing solutions. The proposed algorithms and architectures operate on Galois Fields GF of the form GF(p) for integers and GF(2n) for polynomials. Alternative number representation systems such as Residue Number System (RNS) for integers and Polynomial Residue Number System (PRNS) for polynomials are employed. The mathematical validity of the proposed algorithms and the applicability of RNS and PRNS in the context of cryptographic algorithms is also presented. The derived algorithms are decomposed in a way that versatile structures can be formulated and the corresponding hardware is developed and evaluated. New cryptanalytic properties of the proposed algorithms against certain types of attacks are also highlighted.Furthermore, we try to approach a fundamental problem in Very Large Scale Integration (VLSI) design, that is the problem of evaluating and comparing architectures using models independent from the underlying fabrication technology. We also provide generic methods to evaluate the optimal operation parameters of the proposed architectures and methods to optimize the proposed architectures in terms of speed, area, and area x speed product, based on the needs of the underlying application. The proposed methodologies can be expanded to include applications other than cryptography. Finally, novel algorithms based on new mathematical and design problems for the crucial operation of modular multiplication are presented. The new algorithms preserve the versatile characteristics discussed previously and it is proved that, along with existing algorithms in the literature, they may forma large family of algorithms applicable in cryptography, unified under the common frame of the proposed versatile architectures. Η παρούσα διατριβή άπτεται του θέματος της…