AbstractsBiology & Animal Science

Linear electrooptic microscopy : applications to micro and nano-structured materials

by Duc Thien Trinh




Institution: Cachan, Ecole normale supérieure
Department:
Year: 2015
Keywords: Microscopie optique; Matériaux ferroélectriques; Ferroelectric materials; Nonlinear optics; Periodically or quasi-Periodically poled crystals;
Record ID: 1148466
Full text PDF: http://www.theses.fr/2015DENS0012/document


Abstract

Nous avons développé une nouvelle méthode de microscopie par effet électro-optique linéaire (effet Pockels), dite PLEOM, permettant de cartographier la susceptibilité du deuxième ordre Chi(2) d'un matériau non-centrosymétrique [1, 2]. Cette méthode est complémentaire de la microscopie de génération de seconde harmonique, et s’en distingue par différents aspects physiques et pratiques. Grâce à une détection interférométrique stabilisée, le retard de phase provoqué par une variation d'indice locale du matériau non-linéaire sous l'effet d'un champ électrique est détecté à 10-6 radians près, ouvrant la voie à l'imagerie d'échantillons biologiques ou au suivi du mouvement de nano-sondes [3]. PLEOM apporte un type de données nouveau, la "réponse en phase" du matériau, porteuse d'information physiques plus difficilement accessibles en microscopie biphotonique.Ce manuscrit décrit de nouveaux domaines de développement et d’application de PLEOM, qui a évolué vers une plateforme aux applications variées et multi-échelles, allant du nanométrique au millimétrique.Nous avons tout d’abord montré comment déterminer le vecteur de polarisation attaché à des nano-cristaux ferroélectriques uniques, en vue de leur utilisation comme nano-sondes. Cette nouvelle méthode permet, à notre connaissance de façon unique, de distinguer deux nano-cristaux mono-domaines d'orientations exactement opposées, dont les réponses en SHG ne peuvent pas être distinguées. Une image de phase électro-optique, combinée à un diagramme de polarisation, donne accès à l'orientation vectorielle d'un nano-cristal orienté aléatoirement dans le référentiel du laboratoire. Un verrou est ainsi levé pour des applications comme l'imagerie de nano-domaines ferroélectriques, celle de potentiels électrochimiques membranaires, où l'étude de la dynamique de rotation de molécules. Deux spécificités remarquables de PLEOM en font une méthode d'avenir : la faible intensité de pompage qui assure une bien meilleure biocompatibilité ainsi que la simplicité de la source laser continue utilisée.Nous avons ainsi pu utiliser PLEOM pour caractériser les domaines ferroélectriques d'un cristal de KTiOPO4 périodiquement réorienté en vue d’un quasi-accord de phase, ainsi que ceux d'un cristal bidimensionnel quasi-périodique de LiNbO3. Un retournement clair de la phase de 180 degree est observé au travers des parois de domaines, dont les coefficients électro-optiques apparaissent opposés dans le référentiel du laboratoire. PLEOM se présente ainsi comme un outil de caractérisation non destructif des propriétés de ces cristaux artificiels dont les motifs et les défauts (tels qu'une orientation localement incomplète) ont été caractérisés spatialement, et permet de mesurer localement leurs propriétés non-linéaires, dont le caractère tensoriel permet d’aller au-delà des informations acquises en microscopie classique.En outre, nous avons fait la preuve de principe d'une nouvelle expérience biomimétique, visant à étudier les potentiels membranaires cellulaires, en utilisant PLEOM sur des membranes…