AbstractsPhysics

Physics as technoscience - From research labs to educational labs

by Suvi Tala




Institution: University of Helsinki
Department: Department of Physics
Year: 2015
Keywords: fysiikka, Fysiikan opetus ja oppiminen
Record ID: 1145653
Full text PDF: http://hdl.handle.net/10138/153055


Abstract

A central part of the enculturation of new scientists in the natural sciences takes place in poorly understood apprentice master settings: potential expert researchers learn about success in science by doing science as members of research groups. What makes learning in such settings challenging is that a central part of the expertise they are attempting to achieve is tacit: the ideas guiding scientific knowledge-building are embodied in its practices and are nowadays rarely articulated. This interdisciplinary study develops a naturalistic view concerning scientific knowledge construction and justification and what is learned in those processes, in close cooperation with practitioners and by reflection on their actual practices. Such a viewpoint guides developing the expertise education of scientists. Another goal of the study is to encourage science education at every level to reflect as much as possible the epistemological aspects of doing science that practising scientists can also agree upon. The theoretical part of the dissertation focuses on those features of experimentation and modelling that the viewpoints of scientific practices suggest are essential but which are not addressed in the traditional views of science studies and, as a consequence, in science education. Theoretical ideas are tested and deepened in the empirical part, which concerns nanoscience. The developed contextualized method supports scientists in reflecting on their shared research practices and articulating those reflections in the questionnaire and interview. Contrary to traditional views, physical knowledge is understood to progress through the technoscientific design process, aiming at tightening the mutually developing conceptual and material control over the physical world. The products of the design process are both understanding about scientific phenomena and the means to study them, which means constructing and controlling a laboratory phenomenon, created in a laboratory in the same design process that produces the understanding about its functioning. These notions suggest the revision of what exactly is achieved by science and on what kind of basis, which indeed moves the epistemological views of science towards a viewpoint recognizable to its practitioners. Nowadays, technoscientific design is increasingly embodied in simulative modelling, mediating between the experimental reality and its theoretical framework. Such modelling is neither a part or continuation of theorizing as most literature considers modelling, nor it is only a bare means to analyse experimental data, but a partly independent and flexible method of generating our understanding of the world. Because the rapid development of modelling technology alters the evidential basis of science, a new kind of expertise is needed. The entry to the physical reality provided by generative modelling differs epistemologically and cognitively, from traditional methodological approaches. The expertise developed in such modelling provides scientists with new kinds of…