AbstractsBiology & Animal Science

Plant secondary compounds and soil microbial processes in carbon and nitrogen cycling in relation to tree species

by Sanna Kanerva




Institution: University of Helsinki
Department: Department of Applied Chemistry and Microbiology, Environmental Soil Science; Finnish Forest Research Institute, Vantaa Research Unit
Year: 2007
Keywords: maa- ja ympäristökemia
Record ID: 1144708
Full text PDF: http://hdl.handle.net/10138/20845


Abstract

The aim of this study was to explore soil microbial activities related to C and N cycling and the occurrence and concentrations of two important groups of plant secondary compounds, terpenes and phenolic compounds, under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) as well as to study the effects of volatile monoterpenes and tannins on soil microbial activities. The study site, located in Kivalo, northern Finland, included ca. 70-year-old adjacent stands dominated by silver birch, Norway spruce and Scots pine. Originally the soil was very probably similar in all three stands. All forest floor layers (litter (L), fermentation layer (F) and humified layer (H)) under birch and spruce showed higher rates of CO2 production, greater net mineralisation of nitrogen and higher amounts of carbon and nitrogen in microbial biomass than did the forest floor layers under pine. Concentrations of mono-, sesqui-, di- and triterpenes were higher under both conifers than under birch, while the concentration of total water-soluble phenolic compounds as well as the concentration of condensed tannins tended to be higher or at least as high under spruce as under birch or pine. In general, differences between tree species in soil microbial activities and in concentrations of secondary compounds were smaller in the H layer than in the upper layers. The rate of CO2 production and the amount of carbon in the microbial biomass correlated highly positively with the concentration of total water-soluble phenolic compounds and positively with the concentration of condensed tannins. Exposure of soil to volatile monoterpenes and tannins extracted and fractionated from spruce and pine needles affected carbon and nitrogen transformations in soil, but the effects were dependent on the compound and its molecular structure. Monoterpenes decreased net mineralisation of nitrogen and probably had a toxic effect on part of the microbial population in soil, while another part of the microbes seemed to be able to use monoterpenes as a carbon source. With tannins, low-molecular-weight compounds (also compounds other than tannins) increased soil CO2 production and nitrogen immobilisation by soil microbes while the higher-molecular-weight condensed tannins had inhibitory effects. In conclusion, plant secondary compounds may have a great potential in regulation of C and N transformations in forest soils, but the real magnitude of their significance in soil processes is impossible to estimate. Kasvien tuottamien tiettyjen sekundääristen yhdisteiden on havaittu vaikuttavan maan hiilen ja typen kierron prosesseihin. Tämän tutkimuksen tarkoituksena oli selvittää mahdollisia eroja metsämaan hiilen ja typen kiertoon liittyvissä mikrobiaktiivisuuksissa sekä kahden tärkeän kasvien sekundääriyhdisteryhmän, terpeenien ja fenolisten yhdisteiden, pitoisuuksissa koivikko-, kuusikko- ja männikkömaassa, sekä tutkia, miten maan altistaminen haihtuville monoterpeeneille tai fenolisiin yhdisteisiin kuuluville…