AbstractsBiology & Animal Science

Microchip technology in mass spectrometry-based bioanalysis: Advances in the analysis of peptides, proteins, and pharmaceuticals

by Nina Nordman




Institution: University of Helsinki
Department: Faculty of Pharmacy
Year: 2015
Keywords: farmaceutisk kemi
Record ID: 1143077
Full text PDF: http://hdl.handle.net/10138/153635


Abstract

Analytical microsystems are attractive in modern bioanalysis where sample amounts often are low and fast analyses are required. Microsystems also provide the prospect of integrating several functional elements on a single platform. The aim of this work was to develop analytical microsystems for fast analysis of bio- and drug molecules. For this, microchips with separation- and injection channels and monolithically integrated electrospray ionization (ESI) emitter were fabricated of epoxy photoresist SU-8 by photolithography and adhesive bonding. For peptide mass fingerprinting and protein sequencing characteristic tryptic peptides were fast and easily separated and detected by microchip capillary electrophoresis (MCE)-ESI/mass spectrometry (MS). Additionally, protein identification based on tandem MS fragmentation data of a single tryptic peptide was achieved. Finally, this rapid (total analysis time below ten minutes) microchip method permitted analysis of human muscle cell lysates. For online coupling of microchip capillary isoelectric focusing (cIEF) to ESI/MS a bilateral sheath flow interface or a two-dimensional separation unit was integrated on-chip. Rapid focusing of peptides by their isoelectric points (pI) was achieved without pretreatment of the SU-8 surface. After focusing the peptides were electrokinetically mobilized toward ESI/MS. The two-dimensional chip design enabled unique separation selectivity for peptides based on both pI values and intrinsic electrophoretic mobilities by multiplex-cIEF-transient-isotachophoresis. Rapid metabolic profiling was demonstrated from urine after intake of tramadol or paracetamol. Both phase I- and II metabolites were separated and detected by MCE-ESI/MS within 35 s. In addition, Michaelis-Menten kinetics was successfully determined for the CYP450-mediated oxidation of bufuralol to 1-hydroxybufuralol. Sample preconcentration (pretreatment) was integrated on-chip by solid-phase extraction (SPE) and liquid-phase microextraction (LPME). For SPE, a monolith zone was firmly anchored at the injection cross of the MCE-ESI/MS microchip by laser induced photopolymerization. The monolith was selective toward hydrophobic and hydrophilic sample molecules and enrichment factors as high as 23-fold was achieved with a loading time as short as 25 s. In addition, LPME was easily downscaled to low volume applications and offered selectivity in the analysis of phase I metabolites compared to SPE. In contrast to previous research in the same field this work offers bioanalysis with several on-chip integrated steps (preconcentration, injection, separation, and analysis) without considerably increasing the short analysis times characteristic of microchip assays. Inom bioanalytiken krävs ofta snabba och effektiva analytiska metoder samtidigt som tillgången till prov ofta är mycket liten. Här kan moderna mikroteknologiska metoder erbjuda effektiva lösningar genom att flera olika analytiska funktioner integreras på en cm2 stor plattform gjord av t.ex. glas, kisel eller polymerer. En…