AbstractsChemistry

Structure-property relationships and self-assembly of chlorophyll derivatives in development of light-harvesting structures and materials

by Taru Nikkonen




Institution: University of Helsinki
Department: Department of Chemistry
Year: 2015
Keywords: orgaaninen kemia
Record ID: 1142742
Full text PDF: http://hdl.handle.net/10138/153888


Abstract

In photosynthetic systems, chlorophylls have a vital role in converting the energy of light into chemical energy. The absorption by antenna pigments and subsequent excitation energy transfer to the reaction centre, where charge separation processes take place, result in an electrochemical potential which is utilized in carbohydrate production. The structural properties of the chlorophylls as well as supramolecular interactions, mutual distances and orientations in their natural environment, determine the function of each pigment. The aim of this doctoral thesis was to mimic photosynthetic systems and to develop chlorophyll-based structures and materials for artificial photosynthetic applications. The literature review of this thesis will concentrate on the structural, photophysical, and supramolecular properties of chlorophyll derivatives. Their functions in natural environments and their potential use in artificial light-harvesting assemblies will be thoroughly discussed. The focus of the literature review will be solely on biomimetic systems that are built by the supramolecular approach. In addition to chlorophyll (chlorin) assemblies, supramolecular systems of some important chlorophyll analogues (e.g., porphyrins) are presented. The experimental part of this thesis is based on publications I-IV. Chlorophylls were separated from green algae and modified synthetically to achieve the desired photophysical and structural/supramolecular properties. In the first part of this thesis, the energy transferring antenna structure was designed utilizing a polymer, poly(4-vinylpyridine) (P4VP), to which Zn chlorin pigments were bound noncovalently through metal-ligand axial coordination. The investigation of the assemblies revealed tight coordination both in solution and solid state films. The absorptive and emitting regimes of the solid state Zn chlorin-P4VP assemblies with variable doping levels were determined. In another part of this thesis, a series of covalently linked chlorin dimers were synthesized and their intramolecular folding abilities were investigated using both spectroscopic and theoretical techniques. It was proven that chlorin dimers fold into a C2-symmetric structure via hydrogen bonding when the linker has a suitable length. To be exact, the folding was shown to be favored with 4-10 carbon atom linkers, of which the carbon linker with a 6-atom backbone was the most optimal. As a continuation of the work, the electron donating chlorin dimer was attached to an electron acceptor, fullerene, to give a chlorin dimer−azafulleroid. The experimental spectroscopical studies and theoretical investigations showed that the chlorin dimer−azafulleroid undergoes conformational switching depending on the polarity of the media. In nonpolar media, the hydrogen bonded folded dimer is present, while in polar media the two hydrophopic chlorins wrap around the azafulleroid. The photophysical studies indicated that the lifetime of photoinduced charge separation is longer in the folded conformation having similarities to…