AbstractsChemistry

Sophisticated Instrumental Techniques to Elucidate the Molecular Properties of Human Surface Nanodomains

by Joanna Witos




Institution: University of Helsinki
Department: Department of Chemistry, Laboratory of Analytical Chemistry
Year: 2015
Keywords: chemistry
Record ID: 1138360
Full text PDF: http://hdl.handle.net/10138/153608


Abstract

This doctoral thesis describes the development of novel miniaturized analytical tools applicable to in situ nanoscale studies for a deeper understanding of biomolecular interactions. Capillary electrophoresis (CE), atomic force microscopy (AFM), quartz crystal microbalance (QCM) measurements, and partial filling affinity capillary electrophoresis (PF-ACE) were utilized to study the separation of lipoproteins and their interactions with extracellular matrix (ECM) components. The major focus of the study was on low and high density lipoprotein particles (LDL and HDL), which are the main vehicles of cholesterol transport in human circulation. Lipoproteins are involved in specific interactions with proteoglycans (PGs) and collagens, structural components of ECM of the arterial wall. The interactions lead to the development and progression of atherosclerosis and diabetes. The first step of the work was to clarify, by AFM, the structural and molecular properties of collagens I and III under physiological conditions. Study was made of the effect of decorin on the fibril formation of collagen, which promotes and enhances the binding of collagen with LDL. Moreover, the immobilized collagen I surface was exposed to in situ glycation, and the adsorption pattern of the glycated collagen was elucidated. In addition to AFM, QCM was used to examine characteristics of the interaction between collagens and apolipoprotein B-100 (apoB-100), the major protein of LDL. Values of the dissociation constant were then estimated by evaluating the differences in strength of the binding process. To avoid strong and unwanted adsorption of lipoprotein particles on the inner wall of the capillary, the effect of five different sugars on the separation of lipoproteins was studied by CE in uncoated capillary at physiological pH 7.4. In addition, the effect of the sugars on the size of the lipoproteins was elucidated by asymmetrical flow field-flow fractionation (AsFlFFF) and dynamic light scattering (DLS) measurements. Molecular dynamics (MD) simulations were employed to discover the influence of sugars on the structures of apolipoprotein E (apoE) of HDL and apoB-100 of LDL. In another attempt to eliminate the adsorption of positive analytes and allow their separation, a polycationic coating was developed and covalently bound to the inner wall of the fused silica capillary. The immobilization of the coating was achieved in a three-step procedure during on-line polymerization. The stability study of the coating in wide pH range 3 8 demonstrated the suitability of the coating for the separation of small proteins and -blockers. Finally, PF-ACE technique was used to evaluate in detail the interactions involved in the binding of the most common isoforms of apoE with the major glycosaminoglycan (GAG) chain of PGs, viz., chondroitin-6-sulfate (C6S). As is well known, PF-ACE enables the evaluation of affinity constants only for single-type interactions, and adsorption energy distribution (AED) calculations were introduced to widen its application.…