AbstractsBiology & Animal Science

PCSK9 and berberine as modulators of lipoprotein receptors and neuronal cell death

by Kai Kysenius




Institution: University of Helsinki
Department: Department of Biosciences, Division of Physiology and Neuroscience; University of Helsinki, Neuroscience Center
Year: 2015
Keywords: neurotiede
Record ID: 1132571
Full text PDF: http://hdl.handle.net/10138/154350


Abstract

Aging-related increase of neuronal stress may promote the development of sporadic late-onset Alzheimer s disease (LOAD) and other forms of dementia. LOAD risk is also increased by genetic factors such as ApoE4 and diseases such as type 2 diabetes (T2D). Early LOAD pathology is characterized by alterations in brain lipoprotein receptor expression and neuronal hypometabolism. Multifunctional lipoprotein receptors regulate neuronal plasticity, cholesterol and metabolic homeostasis. Lipoprotein receptors apolipoprotein receptor 2 (ApoER2) and very-low density lipoprotein receptor (VLDLR) bind ApoE, but also interact with proteins centrally involved in LOAD pathogenesis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and the nutraceutical berberine modulate lipoprotein receptor levels in vivo. PCSK9 inhibitors and berberine have recently surfaced as promising treatment options for hypercholesterolemia and T2D, respectively. Additionally, PCSK9 and berberine are implicated in pathways modulating neuronal viability, suggesting they may hold therapeutic potential against neurodegenerative diseases. However, the effects of PCSK9 and berberine on neuronal cell death and lipoprotein receptors are currently poorly understood. The objective of this study was to elucidate the role of PCSK9 and berberine as modulators of lipoprotein receptors and cell death in neurons. The effects of RNAi-mediated PCSK9 downregulation and berberine on neuronal viability were studied in mouse and rat primary neuron cultures. Mechanistic basis of effects were further studied in combination with lentiviral RNA interference, kinase inhibitors and various inducers of cellular stress and cell death. Cell viabilities were assessed by immunofluorescence, Western blotting, and cell toxicity and mitochondrial assays. The main conclusions of this study are: (1) reducing endogenous PCSK9 levels genetically by lentiviral-mediated RNAi protects neurons against apoptotic cell death in an ApoER2-dependent fashion; (2) a potential PCSK9 inhibitor and a widely used nutraceutical berberine causes mitochondria- and NMDA receptor-dependent neuronal cell death at micromolar concentrations; (3) at subtoxic nanomolar concentrations, berberine sensitizes neurons to rotenone and glutamate toxicity calling for caution in berberine dosing and chronic use; and (4) subtoxic stress, including berberine, increase neuronal VLDLR expression, associated with a biphasic effect on the stabilization of the transcription factors hypoxia-inducible factor 1α and β-catenin. To conclude, ApoER2, VLDLR and their modulators PCSK9 and berberine contribute to the regulation of neuronal cell death via multiple mechanisms, suggesting a potential role in neurodegenerative disease pathogenesis at the interface of metabolism and survival signaling. Ikääntymiseen liittyy useita fysiologisia muutoksia, jotka voivat haitata hermosolujen normaali toimintaa ja altistaa hermorappeumasairauksille, kuten Alzheimerin taudille. Alzheimerin tauti on yleisin dementiasairaus, johon liittyy aivojen…