AbstractsBiology & Animal Science

Plant biomarkers as a proxy to study highly decomposed fen peat

by Tiina Ronkainen

Institution: University of Helsinki
Department: Department of Environmental Sciences, Environmental Change Research unit
Year: 2015
Keywords: ympäristötieteet
Record ID: 1132204
Full text PDF: http://hdl.handle.net/10138/153708


Northern peatlands form a large storage of terrestrial carbon and at the same time they provide an important palaeoecological archive to study past climate changes and associated carbon dynamics. One of the most widely used methods to study peatland histories is the plant macrofossil method. However, peat material of the early succession stages, the fens, is often highly decomposed hampering the identification of the fossil plant remains. Thus, current methods may give only a partial view on the past vegetation, and as a result the accuracy of carbon balance estimations and climate implications may remain low. A new promising method to study past plant assemblages from peat is the geochemical plant biomarker method, which has performed well in less decomposed bog peat environments. In my study I assess the applicability of the geochemical plant biomarker method to study past plant assemblages from highly decomposed fen peat. For the first time I apply a living fen plant biomarker training set to study past fen phases. To do this, I collected and analysed two sets of living key fen plants. The training sets included boreal fen, arctic fen and permafrost peat plateau plants. The biomarker analyses on fossil peat were applied in parallel with macrofossil analyses to two boreal and one arctic permafrost peat section, all known to contain highly decomposed peat. The analyses of living plants showed that the biomarker compositions did not differ between the same species collected from different bioclimatic zones, suggesting that, at least to some extent, plant biomarkers can be used universally beyond the geographical areas where the training set was collected. The plant biomarker analyses indicate that the n-alkanes, and their ratios, are the most useful compounds to separate fen plant groups: Sphagnum mosses and vascular plants. Results showed also that biomarker composition of fen plants did not differ substantially from their bog counterparts. However, results indicated that when a wider combination of plants, plant parts and peatland habitats are incorporated into the training set the data interpretation becomes more challenging. For example, the biomarker composition of Sphagnum mosses and sedge roots resembled each other despite their differences in biology. Thus, a larger set of proxies is advisable when plant groups need to be separated more accurately. In the peat sections studied here, the biomarker method performed well in less humified bog peat layers but less well in the highly decomposed fen peat layers. The macrofossil method proved to be most competitive proxy to reconstruct past vegetation assemblages and local environmental conditions through-out the peat sections. However, when macrofossil and biomarker data were interpreted in parallel, it became clear that biomarkers were also able to reflect the major changes in dominating plant groups and in moisture conditions. Accordingly, the analysis separated the most important bog microhabitats and the major regime shifts from fen to bog. I conclude,…