AbstractsBiology & Animal Science

Genetic and molecular analysis or Sanfilippo C syndrome. Generation of a neuronal model using human induced pluripotent stem (iPS) cells and therapeutic strategies

by Isaac Canals Montferrer




Institution: Universitat de Barcelona
Department:
Year: 2015
Keywords: Genètica molecular humana; Genética molecular humana; Human molecular genetics; Malalties neurodegeneratives; Enfermedades neurodegenerativas; Neurodegenerative Diseases; Síndrome de Sanfilippo; Sanfilippo syndrome; Terapèutica; Terapéutica; Therapeutics; Ciències Experimentals i Matemàtiques
Record ID: 1129940
Full text PDF: http://hdl.handle.net/10803/291819


Abstract

Sanfilippo C syndrome is a lysosomal storage disorder that presents an autosomal recessive inheritance pattern and is caused by mutations in the HGSNAT gene, identified in 2006 in the chromosome 8. This gene codes for a lysosomal transmembrane protein, acetyl-CoA α-glucosaminide N-acetyltransferase, which acetylates the terminal glucosamine in the heparan sulfate chain during its degradation, a crucial step previous to the action of the next enzyme of the pathway. Heparan sulfate is a glycosaminoglycan localized in the extracellular matrix being part of proteoglycans and participate in several and important cellular processes. The HGSNAT protein dysfunction promotes the storage of partially degraded heparan sulfate chains inside the lysosomes, causing an alteration in many different cellular processes and affecting especially neurons. This fact promotes the progressive and severe neurodegeneration that appears during childhood as the main phenotypic feature in patients. This thesis represents an important study on the molecular basis of Sanfilippo C syndrome. Firstly, a mutational analysis has been performed, identifying the mutations causing the disease in 15 patients from different origins. A total of 13 different mutations have been found, seven of which were not previously described. The pathogenicity of four missense mutations identified has been proved by measuring the enzyme activity after in vitro expression of the proteins. Also, the pathogenicity of five mutations affecting different conserved splice sites has been demonstrated since they were shown to alter the splicing process. It has been established that two prevalent mutations in Spanish patients accounts for almost the 70% of the total and, using a haplotype analysis, a single origin for each of them has been suggested. Secondly, some therapeutic approaches have been tested, as a first step in the pursuit of an effective therapy that to date does not exist for this disease. The use of modified U1 snRNAs that present a higher complementarity to the mutated splice site sequences than the wild type U1 snRNA has been proved to partially restore the normal splicing process for one of the splicing mutations analyzed. In the case of missense mutations or mutations that result in the loss of some amino acids, this work suggests the possibility to use glucosamine as a chaperone to prevent the incorrect folding of the protein and to facilitate the trafficking process of the protein from the endoplasmic reticulum to the Golgi apparatus. Finally, the use of siRNAs to inhibit important genes in the heparan sulfate synthetic pathway, specifically the EXTL genes, has been suggested as a possible substrate reduction therapy, with the best results obtained on the inhibiton of EXTL2 expression. Finally, during this thesis, a neuronal model for Sanfilippo C syndrome has been obtained. This represents an important progress in the study of this disease since to date, neither cellular nor animal model exists. To achieve this goal, fibroblasts from two different…