AbstractsBiology & Animal Science

Domain adaptation of deformable part-based models

by Jiaolong Xu




Institution: Universitat Autònoma de Barcelona
Department:
Year: 2015
Keywords: Adaptació al domini; Adaptación al dominio; Domain adaptation; Detecció de vianants; Detección de peatones; Pedestrian detection; Models deformables basats en parts; Modelos deformables basados en partes; Deformable part-based models; Tecnologies
Record ID: 1129144
Full text PDF: http://hdl.handle.net/10803/290266


Abstract

La detecció de vianants és crucial per als sistemes d’assistència a la conducció (ADAS). Disposar d’un classificador precís és fonamental per a un detector de vianants basat en visió. Al entrenar un classificador, s’assumeix que les característiques de les dades d’entrenament segueixen la mateixa distribució de probabilitat que la de les dades de prova. Tot i això, a la pràctica, aquesta assumpció pot no complir-se per diferents causes. En aquests casos, en la comunitat de visió per computador és cada cop més comú utilitzar tècniques que permeten adaptar els classificadors existents del seu entorn d’entrenament (domini d’origen) al nou entorn de prova (domini de destí). En aquesta tesi ens centrem en l’adaptació de domini dels detectors de vianants basats en models deformables basats en parts (DPMs). Com a prova de concepte, utilitzem dades sintètiques com a domini d’origen (món virtual) i adaptem el detector DPM entrenat en el món virtual per a funcionar en diferents escenaris reals. Començem explotant al màxim les capacitats de detecció del DPM entrenant en dades del món virtual, però, tot i això, al aplicar-lo a diferents conjunts del món real, el detector encara perd poder de discriminació degut a les diferències entre el món virtual i el real. És per això, que ens centrem en l’adaptació de domini del DPM. Per començar, considerem un únic domini d’origen per a adaptar-lo a un únic domini de destí mitjançant dos mètodes d’aprenentatge per lots, l’A-SSVM i el SASSVM. Després, l’ampliem a treballar amb múltiples (sub-)dominis mitjançant una adaptació progressiva, utilitzant una jerarquia adaptativa basada en SSVM (HASSVM) en el procés d’optimització. Finalment, extenem HA-SSVM per a aconseguir un detector que s’adapti de forma progressiva i sense intervenció humana al domini de destí. Cal destacar que cap dels mètodes proposats en aquesta tesi requereix visitar les dades del domini d’origen. L’evaluació dels resultats, realitzada amb el sistema d’evaluació de Caltech, mostra que el SA-SSVM millora lleugerament respecte el ASSVM i millora en 15 punts respecte el detector no adaptat. El model jeràrquic entrenat mitjançant el HA-SSVM encara millora més els resultats de la adaptació de domini. Finalment, el mètode sequencial d’adaptació de domini ha demostrat que pot obtenir resultats comparables a la adaptació per lots, però sense necessitat d’etiquetar manualment cap exemple del domini de destí. L’adaptació de domini aplicada a la detecció de vianants és de gran importància i és una àrea que es troba relativament sense explorar. Desitgem que aquesta tesi pugui assentar les bases del treball futur d’aquesta àrea.; La detección de peatones es crucial para los sistemas de asistencia a la conducción (ADAS). Disponer de un clasificador preciso es fundamental para un detector de peatones basado en visión. Al entrenar un clasificador, se asume que las características de los datos de entrenamiento siguen la misma distribución de probabilidad que las de los datos de prueba. Sin embargo, en la práctica, esta asunción puede no…