On model predictive control for economic and robust operation of generalised flow-based networks

by Juan Manuel Grosso Pérez

Institution: Universitat Politècnica de Catalunya
Year: 2015
Keywords: Economic optimisation; Robust performance; Reliability; Centralised control; Distributed control; Non-iterative coordination; Cooperative control; MPC; Optimización económica; Desempeño robusto; Fiabilidad; Control centralizado; Control distribuido; Coordinación no-iterativa; Control cooperativo
Record ID: 1127834
Full text PDF: http://hdl.handle.net/10803/288218


This thesis is devoted to design Model Predictive Control (MPC) strategies aiming to enhance the management of constrained generalised flow-based networks, with special attention to the economic optimisation and robust performance of such systems. Several control schemes are developed in this thesis to exploit the available economic information of the system operation and the disturbance information obtained from measurements and forecasting models. Dynamic network flows theory is used to develop control-oriented models that serve to design MPC controllers specialised for flow networks with additive disturbances and periodically time-varying dynamics and costs. The control strategies developed in this thesis can be classified in two categories: centralised MPC strategies and non-centralised MPC strategies. Such strategies are assessed through simulations of a real case study: the Barcelona drinking water network (DWN). Regarding the centralised strategies, different economic MPC formulations are first studied to guarantee recursive feasibility and stability under nominal periodic flow demands and possibly time-varying economic parameters and multi-objective cost functions. Additionally, reliability-based MPC, chance-constrained MPC and tree-based MPC strategies are proposed to address the reliability of both the flow storage and the flow transportation tasks in the network. Such strategies allow to satisfy a customer service level under future flow demand uncertainty and to efficiently distribute overall control effort under the presence of actuators degradation. Moreover, soft-control techniques such as artificial neural networks and fuzzy logic are used to incorporate self-tuning capabilities to an economic certainty-equivalent MPC controller. Since there are objections to the use of centralised controllers in large-scale networks, two non-centralised strategies are also proposed. First, a multi-layer distributed economic MPC strategy of low computational complexity is designed with a control topology structured in two layers. In a lower layer, a set of local MPC agents are in charge of controlling partitions of the overall network by exchanging limited information on shared resources and solving their local problems in a hierarchical-like fashion. Moreover, to counteract the loss of global economic information due to the decomposition of the overall control task, a coordination layer is designed to influence non-iteratively the decision of local controllers towards the improvement of the overall economic performance. Finally, a cooperative distributed economic MPC formulation based on a periodic terminal cost/region is proposed. Such strategy guarantees convergence to a Nash equilibrium without the need of a coordinator and relies on an iterative and global communication of local controllers, which optimise in parallel their control actions but using a centralised model of the network.; Esta tesis se enfoca en el diseño de estrategias de control predictivo basado en modelos (MPC, por sus siglas en inglés) con la…