AbstractsMathematics

Computation of Normally Hyperbolic Invariant Manifolds

by Marta Canadell Cano




Institution: Universitat de Barcelona
Department:
Year: 2014
Keywords: Sistemes dinàmics diferenciables; Sistemas dinámicos diferenciales; Differentiable dynamical systems; Varietats (Matemàtica); Variedades (Matemáticas); Manifolds (Mathematics); Hiperbolicitat normal; Hiperbolicidad normal; Normal hiperbolicity; Computació numèrica; Computación numérica; Numerical computing; Ciències Experimentals i Matemàtiques
Record ID: 1124413
Full text PDF: http://hdl.handle.net/10803/277215


Abstract

The subject of the theory of Dynamical Systems is the evolution of systems with respect to time. Hence, it has many applications to other areas of science, such as Physics, Biology, Economics, etc. and it also has interactions with other parts of Mathematics. The global behavior of a dynamical system is organized by its invariant objects, the simplest ones are equilibria and periodic orbits (and related invariant manifolds). Normally hyperbolic invariant manifolds (NHIM for short) are some of these invariant objects. They have the property to persist under small perturbations of the system. These NHIM are characterized by the fact that the directions on the points of the manifold split into stable, unstable and tangent components. The growth rate of stable directions (for which forward evolution of the system goes to zero) and unstable directions (for which backward evolution goes to zero) dominate the growth rate of the tangent directions. The robustness of normally hyperbolic invariant manifolds makes them very useful to understand the global dynamics. Both the theory and the computation of these objects are important for the general understanding of a dynamical system. The main goal of my thesis is to develop efficient algorithms for the computation of normally hyperbolic invariant manifolds, give a rigorous mathematical theory and implement them to explore new mathematical phenomena. For simplicity, we consider the problem for discrete dynamical systems, since it is known that the discrete case implies the continuous case using time one flow. We consider a diffeomorphism F : Rm → Rm and a d-torus parameterized by K : Td → Rm which is invariant under F. This means that there exists a diffeomorphism f : Td → Td (the internal dynamics) such that it satisfies F ◦ K = K ◦ f, (0.3) called the invariance equation. Our goal is to solve this invariance equation considering two different scenarios: one in which we do not know the internal dynamics of the invariant torus (where K and f are our unknowns), see Chapter 4, and the other in which we impose that the internal dynamics is a rigid rotation with a quasi-periodic frequency (where K is the unknown and f is the rigid rotation), for which we also need to add an adjusting parameter to equation (0.3), see Chapters 2 and 3. Additionally, in both cases we are also interested in computing the invariant tangent and normal bundles.; L’objecte d’estudi dels Sistemes Dinàmics és l’evolució dels sistemes respecte del temps. Per aquesta raó, els Sistemes Dinàmics presenten moltes aplicacions en altres àrees de la Ciència, com ara la Física, Biologia, Economia, etc. i tenen nombroses interaccions amb altres parts de les Matemàtiques. Els objectes invariants organitzen el comportament global d’un sistema dinàmic, els més simples dels quals són els punts fixos i les òrbites periòdiques (així com les seves corresponents varietats invariants). Les Varietats Invariants Normalment Hiperbòliques (NHIM forma abreviada provinent de l’anglès) són alguns d’aquests objectes invariants.…