AbstractsChemistry

Development of Cu(2)ZnSn(S,Se)(4) based solar cells

by Andrew Fairbrother




Institution: Universitat de Barcelona
Department:
Year: 2014
Keywords: Energia solar; Energía solar; Solar energy; Semiconductors; Semiconductores; Fotoelectricitat; Fotoelectricidad; Photoelectricity; Espectroscòpia Raman; Espectroscopia Raman; Raman spectroscopy; Ciències Experimentals i Matemàtiques
Record ID: 1124324
Full text PDF: http://hdl.handle.net/10803/145615


Abstract

Thin film solar cell technologies are rapidly developing, and chalcopyrite (Cu(In,Ga)Se2) based devices have demonstrated the highest power conversion efficiencies on the laboratory scale. However, in spite of this promise, there are concerns about the mid- to long-term viability of the material because it contains the relatively scarce elements of indium and gallium. This has led to the development of kesterite (Cu2ZnSn(S,Se)4) based photovoltaic technologies, which is particularly promising because of its similarities with the chalcopyrite material. In this material system indium and gallium are replaced by the more earth abundant elements of zinc and tin. Device efficiencies are still lower than Cu(In,Ga)Se2, but further research and development has led to significant increases in performance in the past few years. To date the device structure and processing parameters for kesterite based devices has been mostly copied from chalcopyrite based technologies. The objective of this thesis is to further develop these kesterite based technologies, and it covers some of the basic challenges related to it, including secondary phase formation and identification, and optimization of the front and back contact areas. Particular emphasis is placed on the deposition and thermal processing of this compound, and how these affect secondary phase formation and device properties. It is based on several articles which explore these in depth. This includes detailed characterization by Raman scattering spectroscopy, x-ray diffraction, scanning electron microscopy, and other techniques. Highlights of the thesis work include: development of a selective chemical etch to remove ZnS, a common secondary phase in this system, which leads to significant improvements in device performance; elaboration of a sulfo-selenization method to form Cu2ZnSn(S,Se)4 from metallic precursors; and understanding the influence of thermal processing parameters on phase formation and distribution; En los últimos años ha habido un rápido desarrollo en las tecnologías de celdas solares basadas en capa delgada, siendo hasta el momento los dispositivos basados en calcopiritas (Cu(In,Ga)Se2) los que han mostrado una mayor eficiencia de conversión fotovoltaica a escala de laboratorio. Sin embargo, y a pesar de tan prometedores resultados, existe una preocupación sobre la viabilidad a medio y largo término de estos materiales debido a la presencia en su composición de elementos relativamente escasos en la corteza terrestre, como son el In y el Ga. Esto ha llevado al desarrollo de tecnologías fotovoltaicas basadas en kesterita (Cu2ZnSn(S,Se)4), que es especialmente prometedora dada su gran similitud con la calcopirita. En este compuesto, el indio y el galio son reemplazados por elementos más abundantes como son el cinc y el estaño. Los valores de eficiencia de los dispositivos aún están por debajo de los del Cu(In,Ga)Se2, pero nuevas investigaciones y técnicas de desarrollo han llevado a importantes avances en los últimos años. A día de hoy, tanto los parámetros de…