AbstractsBiology & Animal Science

Generation, recombination and extraction of charges in polymer:fullerene bulk heterojunction solar cells

by Steve Albrecht

Institution: Universität Potsdam
Degree: PhD
Year: 2015
Record ID: 1116735
Full text PDF: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/7228


A dramatic efficiency improvement of bulk heterojunction solar cells based on electron-donating conjugated polymers in combination with soluble fullerene derivatives has been achieved over the past years. Certified and reported power conversion efficiencies now reach over 9% for single junctions and exceed the 10% benchmark for tandem solar cells. This trend brightens the vision of organic photovoltaics becoming competitive with inorganic solar cells including the realization of low-cost and large-area organic photovoltaics. For the best performing organic materials systems, the yield of charge generation can be very efficient. However, a detailed understanding of the free charge carrier generation mechanisms at the donor acceptor interface and the energy loss associated with it needs to be established. Moreover, organic solar cells are limited by the competition between charge extraction and free charge recombination, accounting for further efficiency losses. A conclusive picture and the development of precise methodologies for investigating the fundamental processes in organic solar cells are crucial for future material design, efficiency optimization, and the implementation of organic solar cells into commercial products. In order to advance the development of organic photovoltaics, my thesis focuses on the comprehensive understanding of charge generation, recombination and extraction in organic bulk heterojunction solar cells summarized in 6 chapters on the cumulative basis of 7 individual publications. The general motivation guiding this work was the realization of an efficient hybrid inorganic/organic tandem solar cell with sub-cells made from amorphous hydrogenated silicon and organic bulk heterojunctions. To realize this project aim, the focus was directed to the low band-gap copolymer PCPDTBT and its derivatives, resulting in the examination of the charge carrier dynamics in PCPDTBT:PC70BM blends in relation to by the blend morphology. The phase separation in this blend can be controlled by the processing additive diiodooctane, enhancing domain purity and size. The quantitative investigation of the free charge formation was realized by utilizing and improving the time delayed collection field technique. Interestingly, a pronounced field dependence of the free carrier generation for all blends is found, with the field dependence being stronger without the additive. Also, the bimolecular recombination coefficient for both blends is rather high and increases with decreasing internal field which we suggest to be caused by a negative field dependence of mobility. The additive speeds up charge extraction which is rationalized by the threefold increase in mobility. By fluorine attachment within the electron deficient subunit of PCPDTBT, a new polymer F-PCPDTBT is designed. This new material is characterized by a stronger tendency to aggregate as compared to non-fluorinated PCPDTBT. Our measurements show that for F-PCPDTBT:PCBM blends the charge carrier generation becomes more efficient and the field-dependence…