AbstractsBiology & Animal Science

Ionotropic glutamate receptor dysfunction in pediatric neurodevelopment

by Kirsten Geider




Institution: Technische Universität Darmstadt
Department: BiologyNeurosensory Systems
Degree: PhD
Year: 2015
Record ID: 1110663
Full text PDF: http://tuprints.ulb.tu-darmstadt.de/4411/


Abstract

Der N-methyl-D-aspartate (NMDA) Rezeptor ist ein ligandengesteuerter Ionenkanal und gehört zur Familie der ionotropen Glutamatrezeptoren (iGluR). Aufgrund seiner hohen Ca2+-Leitfähigkeit und seiner heterotetrameren Assemblierung spielt der NMDA Rezeptor innerhalb der iGluRs eine besondere Rolle. Für die Funktion sowie in der Entwicklung des zentralen Nervensystem, spielen diese Rezeptoren eine zentrale Rolle. Weiterhin sind sie an Prozessen wie Lernen und Gedächtnisbildung beteiligt. Eine Schädigung von NMDA Rezeptoren wird mit einer Reihe von neurologischen Erkrankungen in Verbindung gebracht und aufgrund ihrer wichtigen Rolle für die Gehirnentwicklung sind sie von großem Interesse in pathologischen Zusammenhängen. NMDA Rezeptoren sind aus zwei obligaten GluN1 und zwei GluN2(A-D) oder GluN3(A,B) Untereinheiten aufgebaut. Jede dieser Untereinheiten weist einen modularen Aufbau mit verschiedenen Domänen auf, welche für unterschiedliche Funktionen zuständig sind. Die extrazellulär gelegene N-terminale Domäne (NTD) hat eine modulierende Funktion und besitzt Bindestellen für allosterische Modulatoren, wie beispielsweise Zink. Die Liganden-Bindungs-Domäne (LBD) beinhaltet die Agonisten-Bindestellen und ist mit den Transmembrandomänen (TMD) verbunden. Die drei Transmembrandomänen (M1, M2, M3) und die Wiedereintrittsschleife (P-Loop) bilden die Ionenkanalpore. Die Pore wird durch die QRN Stelle verengt, welche entscheidend für die Permeationseigenschaften des Rezeptors ist. Ein Ziel der Arbeit war die Analyse des NMDA Rezeptors in pathologischen Zusammenhängen. Dabei wurde der Einfluss der allosterischen Modulation, welcher über die NTD vermittelt wird, untersucht. Weiterhin wurde der Einfluss der Porenregion bezüglich des Mg2+-Blocks und der Ca2+-Permeabilität analysiert. In Zusammenarbeit mit klinischen Arbeitsgruppen erhielten wir Informationen über Mutationen in verschiedenen NMDA Rezeptor Untereinheiten, aus Patienten mit verschiedenen Epilepsie-Syndromen. Für die Analyse wurden einzelne Mutationen in der NTD und der Ionenkanalregion ausgewählt und mittels zielgerichteter Mutagenese eingeführt. Anschließend erfolgte die funktionale Charakterisierung der ausgewählten Mutationen mittels der Zwei-Elektroden-Spannungsklemme (Two-electrode-voltage-clamp, TEVC) an Xenopus laevis Oozyten. Die elektrophysiologischen Analysen der verschiedenen Mutationen in der NTD und der Kanalpore zeigten eine Verstärkung (gain of function) der Ionenkanalfunktion durch eine Verminderung verschiedener Inhibitionsmechansimen. Die Mutation GluN2A p.Ala243Val in der NTD führte zu einem Verlust der Zn2+-Inhibition. Die Mutationen in der Kanalregion führten zu einer starken Verringerung des spannungsabhängigen Mg2+-Blocks sowie höheren, relativen Ca2+-Permeabilitäten. Diese Verstärkung (gain of function) der Ionenkanalfunktion könnte ein molekulares Korrelat für die Epilepsie-Syndrome darstellen, wodurch es zu einer Überaktivierung der Rezeptoren kommt. In neuronalen Netzen könnte dies zu einer Übererregung (Hyperexzitabilität) der…