AbstractsBiology & Animal Science

Cavity QED with superconductors and its application to the Casimir effect

by Harald Richard Haakh




Institution: Universität Potsdam
Department:
Year: 0
Record ID: 1106927
Full text PDF: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/3129


Abstract

Diese Diplomarbeit untersucht den Casimir-Effekt zwischen normal- und supraleitenden Platten über einen weiten Temperaturbereich, sowie die Casimir-Polder-Wechselwirkung zwischen einem Atom und einer solchen Oberfläche. Hierzu wurden vorwiegend numerische und asymptotische Rechnungen durchgeführt. Die optischen Eigenschaften der Oberflächen werden dann aus dielektrischen Funktionen oder optischen Leitfähigkeiten erhalten. Wichtige Modellen werden vorgestellt und insbesondere im Hinblick auf ihre analytischen und kausalen Eigenschaften untersucht. Es wird vorgestellt, wie sich die Casimir-Energie zwischen zwei normalleitenden Platten berechnen lässt. Frühere Arbeiten über den in allen metallischen Kavitäten vorhandenen Beitrag von Oberflächenplasmonen zur Casimir-Wechselwirkung wurden zum ersten mal auf endliche Temperaturen erweitert. Für Supraleiter wird eine analytische Fortsetzung der BCS-Leitfähigkeiten zu rein imaginären Frequenzen, sowohl innerhalb wie außerhalb des schmutzigen Grenzfalles verschwindender mittlerer freier Weglänge vorgestellt. Es wird gezeigt, dass die aus dieser neuen Beschreibung erhaltene freie Casimir-Energie in bestimmten Bereichen der Materialparameter hervorragend mit der im Rahmen des Zwei-Fluid-Modells für den Supraleiter berechneten übereinstimmt. Die Casimir-Entropie einer supraleitenden Kavität erfüllt den Nernstschen Wärmesatz und weist einen charakteristischen Sprung beim Erreichen des supraleitenden Phasenübergangs auf. Diese Effekte treten ebenfalls in der magnetischen Casimir-Polder-Wechselwirkung eines Atoms mit einer supraleitenden Oberfläche auf. Es wird ferner gezeigt, dass die magnetische Dipol-Wechselwirkung eines Atomes mit einem Metall sehr stark von den dissipativen Eigenschaften und insbesondere von den Oberflächenströmen abhängt. Dies führt zu einer starken Unterdrückung der magnetischen Casimir-Polder-Energie bei endlichen Temperaturen und Abständen oberhalb der thermischen Wellenlänge. Die Casimir-Polder-Entropie verletzt in einigen Modellen den Nernstschen Wärmesatz.Ähnliche Effekte werden für den Casimir-Effekt zwischen Platten kontrovers diskutiert. In den entsprechenden elektrischen Dipol-Wechselwirkungen tritt keiner dieser Effekte auf. Die Ergebnisse dieser Arbeit legen nahe, das bekannte Plasma-Modells als Grenzfall eines Supraleiters bei niedrigen Temperaturen (bekannt als London-Theorie) zu betrachten, statt als Beschreibung eines normales Metalles. Supraleiter bieten die Möglichkeit, die Dissipation der Oberflächenströme in hohem Maße zu steuern. Dies könnte einen experimentellen Zugang zu den optischen Eigenschaften von Metallen bei niedrigen Frequenzen erlauben, die eng mit dem thermischen Casimir-Effekt verknüpft sind. Anders als in entsprechenden Mikrowellen-Experimenten sind hierbei die Energien und Impulse unabhängige Größen. Die Messung der Oberflächenwechselwirkung zwischen Atomen und Supraleitern ist mit den heute verfügbaren Atomfallen auf Mikrochips möglich und der magnetische Anteil der Wechselwirkung sollte spektroskopischen Techniken…