Valence changes at interfaces and surfaces investigated by X-ray spectroscopy

by Uwe Treske

Institution: Technische Universität Dresden
Department: Fakultät Mathematik und Naturwissenschaften
Degree: PhD
Year: 2015
Record ID: 1106787
Full text PDF: http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162589


In this thesis valence changes at interfaces and surfaces of 3d and 4f systems are investigated by X-ray spectroscopy, in particular X-ray photoemission (XPS), X-ray absorption (XAS) and resonant photoemission spectroscopy (ResPES). The first part addresses the electronic properties of the oxides LaAlO3, LaGaO3 and NdGaO3 grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals along (001)-direction. These polar/non-polar oxide interfaces share an insulator to metal phase transition as a function of overlayer thickness including the formation of an interfacial two dimensional electron gas. The nature of the charge carriers, their concentration and spatial distribution, and the band alignment near the interface are studied in a comparative manner and evaluated quantitatively. Irrespective of the different overlayer lattice constants and bandgaps, all the heterostructures behave similarly. Rising Ti3+ concentration is monitored by Ti 2p XPS, Ti L-edge XAS and by resonantly enhanced Ti 3d excitations in the vicinity of EF (ResPES) when the layer number n increases. This indicates that the active material is in all cases a near interface SrTiO3 layer of 4nm thickness. Band bending in SrTiO3 occurs but no electric field is detected inside the polar overlayers. Essential aspects of the findings are captured by scenarios where the polar forces are alleviated by surface defect creation or the separation of photon generated electron-hole pairs in addition to the electronic reconstruction at n = 4 unit cells layer thickness. Furthermore, deviations from an abrupt interface are found by soft X-ray photoemission spectroscopy which may affect the interface properties. The surface sensitivity of the measurements has been tuned by varying photon energy and emission angle. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From a quantitative analysis it is concluded that during the growth process a small amount of Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide. In the second part of this thesis the heavy fermion superconductors CeMIn5 (M = Co, Rh, Ir) are investigated by temperature- and angle-dependent XPS. In this material class the subtle interplay between localized Ce 4f and itinerant valence electrons dominate the electronic properties. The Ce 3d core level has a very similar shape for all three materials and is indicative of weak f-hybridization. The spectra are analyzed using a simplified version of the Anderson impurity model, which yields a Ce 4f occupancy that is larger than 0.9. The temperature dependence shows a continuous, irreversible and exclusive broadening of the Ce 3d peaks, due to oxidation of Ce at the surface. In der vorliegenden Dissertation werden Valenzänderungen an Grenzflächen und Oberflächen mittels Verfahren der Röntgenspektroskopie untersucht, zu denen die…