AbstractsBiology & Animal Science

Biosphere-Atmosphere Exchange of Peroxyacetyl Nitrate: Development of a Flux Measurement System and its Application on a Grassland Ecosystem

by Alexander Moravek




Institution: Universität Bayreuth
Department: Biologie, Chemie und Geowissenschaften
Degree: PhD
Year: 2014
Record ID: 1105688
Full text PDF: https://epub.uni-bayreuth.de/1688/


Abstract

Peroxyacetyl nitrate (PAN) is an organic nitrogen species playing an important role in atmospheric chemistry. Being a source of other nitrogen oxides, it promotes for example the formation of aerosol particles and tropospheric ozone (O3). It has an impact on air quality, human health, as well as on aquatic and terrestrial ecosystems. Knowledge of the formation and removal of atmospheric PAN is thus important and also essential for the improvement of the chemistry of climate models. While PAN is known to be taken up by vegetation, underlying mechanisms are still not well understood and the role of PAN deposition as a removal process and source of nitrogen to ecosystems is not clear. This thesis presents a measurement system designed for the determination of biosphere-atmosphere exchange fluxes of PAN. The system was applied on a natural grassland ecosystem with the focus on the performance of the flux measurement system, but also with the aim to contribute to a better understanding of the biosphere-atmosphere exchange of PAN. The system was designed for the application of two flux measurement techniques, hyperbolic relaxed eddy accumulation (HREA) and the modified Bowen ratio (MBR) method, employing a gaschromatograph with electron capture detection (GC-ECD) for PAN analysis. A keystone in its design was the pre-concentration of PAN by capillary columns, which were used as up- and downdraft reservoirs for the HREA application and enabled simultaneous sampling at two measurement heights, which is an important feature for the MBR method. A major challenge of the design was the resolution of small PAN mixing ratio differences by the analytical unit, which required an optimum choice of operational settings and a detailed error analysis. The PAN flux measurement system was first applied on a nutrient-poor natural grassland site at the premises of the Mainz-Finthen Airport, Germany, in the period from August to September 2011. The application of the MBR method yielded average daytime PAN fluxes of -0.07 nmol/m2/s with a random flux error of ±0.03 nmol/m2/s, which was mainly attributed to the small PAN mixing ratio differences. Due to both a higher surface resistance and larger uncertainties of the PAN analysis, at the natural grassland site no significant PAN fluxes could be resolved with the HREA method. The thesis demonstrates that above low vegetation, like the studied grassland, the MBR method is in most cases more suitable than the REA technique, while the REA is preferably used above high vegetation such as forest canopies. Due to large errors of the HREA application, this thesis presents a detailed analysis of the effects of an imprecise sampling of up- and downdraft events for REA applications. Especially, the implication of a long inlet tube may introduce a significant lag time error and high frequency attenuation effects. The simulation of REA fluxes of several scalar quantities revealed that REA fluxes might be generally underestimated from less than 5% to about 50% for typically observed lag time errors.…